350 rub
Journal Radioengineering №7 for 2025 г.
Article in number:
Algorithm for the operation of a video-inertial navigation system for an unmanned aerial vehicle
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202507-26
UDC: 623.746.4-519
Authors:

D.S. Mongush1, V.G. Bondarev2, D.V. Lopatkin3

1–3 MESC of Air Forces N.Е. Zhukоvsky and Yu.А. Gаgаrin Air Force Academy (Vоrоnеzh, Russia)

1 denzin.mongush@mail.ru; 2 bondarevstis@mail.ru; 3 dimkaao@yandex.ru

Abstract:

Problem formulation. Combat experience in local wars and armed conflicts has demonstrated the high effectiveness of military unmanned aerial vehicles (UAVs) in overcoming air defense zones. Analysis of modern air defense detection systems reveals that mini and small UAVs, characterized by low radar cross-section and capable of flying at ultra-low altitudes (up to 30 m) at speeds up to
100 km/h, successfully penetrate air defense zones. A critical requirement for UAVs is ensuring the required navigation accuracy for reaching a designated area under conditions of enemy electronic warfare (EW) countermeasures. An analysis of existing navigation systems shows that those used in military mini and small UAVs fail to meet accuracy, jamming resistance, and size-weight requirements, preventing autonomous UAV operation in modern combat scenarios.

Purpose. To achieve the required accuracy of a UAV navigation system that ensures operation under EW countermeasures and ultra-low-altitude flight conditions through the development of a Video-Inertial Navigation System (VINS).

Results. An algorithm for real-time coordinate reckoning in VINS has been developed, distinguished by the use of a monocular video stream of the Earth’s surface and signals from a three-component gyroscope. The algorithm is based on a coordinate reckoning method that calculates UAV coordinates while compensating for gyro block drift.

Practical significance. The study provides recommendations for improving the algorithmic support of UAV navigation systems, ensuring the required accuracy of coordinate determination, enhancing autonomy, jamming resistance, and safety during combat missions to destroy ground targets under conditions of suppressed navigation and control channels.

Pages: 167-175
For citation

Mongush D.S., Bondarev V.G., Lopatkin D.V. Algorithm for the operation of a video-inertial navigation system for an unmanned aerial vehicle. Radiotekhnika. 2025. V. 89. № 7. P. 164−175. DOI: https://doi.org/10.18127/j00338486-202507-26 (In Russian)

References
  1. Turik A.A., Miroshnikov V.I., Goncharov S.A. Primenenie BPLA storonami pri vedenii boevyh dejstvij v Sirii. URL: http://www. russiandrone.ru (data obrashhenija: 25.01.2025) (in Russian).
  2. Klimov M. Na ostrie protivodejstvija: BLA protiv PVO. Voennoe obozrenie. 2020. www.topwar.ru (data obrashhenija: 14.01.2025).
  3. Shherbakov V. Udarnye BLA. Ajerokosmicheskoe obozrenie. 2013. № 6. S. 22–23 (in Russian).
  4. Linnik S.V. Boevoe primenenie bespilotnyh letatel'nyh apparatov. Voennoe obozrenie. 2013. www.topwar.ru (data obrashhenija: 25.01.2025) (in Russian).
  5. Kondrat'ev A. Perspektivy razvitija i primenenija bespilotnyh i robotizirovannyh sredstv vooruzhennoj bor'by v VS vedushhih zarubezhnyh stran. Zarubezhnoe voennoe obozrenie. 2011. № 5. S. 14–21 (in Russian).
  6. Blinkov Ju. Perspektivy razvitija bespilotnoj aviacii v vedushhih stranah NATO. Zarubezhnoe voennoe obozrenie. 2012. № 12. S. 54–57.
  7. Chahovskij Ju.N., Kovjazin B.S. Vozmozhnosti ispol'zovanija BPLA v voennyh celjah. Nauka i voennaja bezopasnost'. 2008. № 2.
    S. 38–40 (in Russian).
  8. Chekunov A. Programma sozdanija BPLA v interesah VS SShA. Zarubezhnoe voennoe obozrenie. 2014. № 9. S. 65–71.
  9. Demidjuk A., Fomin A. Drony v gorode: novye vozmozhnosti ili novye ugrozy. Sistemy bezopasnosti. 2019. № 6. www.secuteck.ru (data obrashhenija: 03.02.2025) (in Russian).
  10. Rastopchin V.V. Udarnye bespilotnye letatel'nye apparaty i protivovozdushnaja oborona – problemy i perspektivy protivostojanija. www.researchgate.net (data obrashhenija: 06.02.2025) (in Russian).
  11. Inozemcev D.P. Bespilotnye letatel'nye apparaty: teorija i praktika. www.rusdrone. ru (data obrashhenija: 11.02.2025) (in Russian).
  12. Astashkin D.G. Konceptual'nye vzgljady komandovanija VVS SShA na razvitie bespilotnoj aviacii. Sb. materialov i statej II nauch.-praktich. konf. «Perspektivy razvitija i primenenija kompleksov BPLA». MO, 924 GC bespilotnoj aviacii, g. Kolomna, 2017. S. 183–196 (in Russian).
  13. Shmidt Dzh.T. Jekspluatacija navigacionnyh sistem na osnove GPS v slozhnyh uslovijah okruzhajushhej sredy. Giroskopija i navigacija. 2019. T. 27. № 1 (104). S. 3–21 (in Russian).
  14. Emel'jancev G.I., Stepanov A.P., Blazhnov B.A. O reshenii navigacionnoj zadachi dlja letatel'nyh apparatov s is-pol'zovaniem inercial'nogo modulja na mikromehanicheskih datchikah i nazemnyh radioorientirov. Giroskopija i navigacija. 2017. T. 25. № 1(96).
    S. 3–17 (in Russian).
  15. Molchanov A.S., Kolomoets V.A. TSifrovye portrety tipovykh obektov vozdushnoi razvedki. M.: Izd-vo «Pero». 2025. 194 s. (in Russian).
  16. Lowe D.G. Distinctive image features from scale invariant keypoints. International Journal of Computer Vision. 2004. V. 60. № 2.
    S. 91–110 (in Russian).
  17. Bay H., Ess A., Tuytelaars T., Van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Under-Standing. 2008.
    V. 110. № 3. S. 346–359 (in Russian).
  18. Krasovskij A.A., Beloglazov I.N., Chigin G.P. Teorija korreljacionno-jekstremal'nyh navigacionnyh sistem. M.: Nauka. 1979. 380 s. (in Russian).
  19. Naumov A. I., Kichigin E. K., Safonov I. A., Moh Ahmed Medani Ahmed Jelamin. Bortovoj kompleks vysokotochnoj navigacii s korreljacionno-jekstremal'noj navigacionnoj sistemoj i cifrovoj kartoj rel'efa mestnosti. Vestnik VGTU. 2013. № 6-1. S. 51–55 (in Russian).
  20. Bobkov S.A., Kramarenko V.N., Torgun I.N. Ob obshhih operativno-takticheskih trebovanijah, pred’javljaemyh k perspektivnym malorazmernym bespilotnym letatel'nym apparatam voennogo naznachenija. Izvestija rossijskoj akademii raketnyh i artillerijskih nauk. 2022. № 3(123). S. 92–103 (in Russian).
  21. Bykanov A.S., Zhorov V.V. Metody opredelenija osobyh tochek izobrazhenija dlja postroenija ponoram. Sb. statej nauch.-tehnich. konf. «Reshetnevskie chtenija». Krasnojarsk: SFU im. akademika M.F. Reshetneva. 2016. № 15. S. 191-192 (in Russian).
  22. Bondarev V.G. Videonavigacija letatel'nogo apparata. Nauchnyj vestnik MGTU GA. 2015. № 213. S. 65-72 (in Russian).
Date of receipt: 17.03.2025
Approved after review: 19.03.2025
Accepted for publication: 30.06.2025