A.V. Bashkirov1, M.V. Khoroshailova2, A.S. Demikhova3
1-3 FSBEI of HE “Voronezh State Technical University” (Voronezh, Russia)
1 fabi7@mail.ru; 2 pmv2205@mail.ru; 3 kipr@vorstu.ru
Problem statement. With the rapid development of unmanned aircraft systems (UAS), the critical need for reliable and operational data transmission is increasing. Existing encoding and decoding systems often prove to be a bottleneck, limiting bandwidth and increasing delays. It is proposed to develop a decoding system using a partially parallel architecture. This approach will optimize the balance between data processing speed and hardware costs. Parallelization of computing tasks will reduce decoding latency, while partial parallelism will ensure efficient use of hardware resources. The key aspect is to keep energy consumption at the same level. Optimization of architecture and algorithms will allow achieving the required performance without increasing energy costs. As a result, the developed decoding system will ensure reliable data transmission for UAS, increasing their efficiency and security.
Goal. Development of a QC-LDPC decoder architecture aimed at optimizing latency, power consumption, and hardware resources using 2-bit quantization and a simplified memory structure for the verification unit.
Results. The simulation results show that the proposed decoder is 1 dB higher than the decoder implemented using the standard min-sum (MS) algorithm and 1.4 dB better than the decoder using the belief propagation algorithm.
Practical significance. The use of Boolean logic in blocks of variables and verification nodes simplifies the calculation of messages transmitted between them using logical circuits, reducing the load on hardware resources. The architecture provides a compromise between decoding performance and resource consumption, which makes it attractive for energy-efficient applications.
The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment "youth laboratory" № FZGM-2024-0003.
Bashkirov A.V., Khoroshailova M.V., Demikhova A.S. Organization of a decoding system using a partially parallel architecture. Radiotekhnika. 2025. V. 89. № 7. P. 20−24. DOI: https://doi.org/10.18127/j00338486-202507-04 (In Russian)
- Horoshajlova M.V. Arhitektura kanal'nogo kodirovanija na osnove PLIS dlja 5G besprovodnoj seti s ispol'zovaniem vysokourovnevogo sinteza. Vestnik Voronezhskogo gos. tehnich. un-ta. 2018. T. 14. № 2. S. 99-105 (in Russian).
- Safaldin M., Otair M., Abualigah L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021. № 12. Р. 1559–1576.
- Yun-Jiang Wang, Barry C. Sanders, Bao-ming Bai, Xin-mei Wang. Enhanced feedback iterative decoding of sparse quantum codes. IEEE Trans. Inf. Theory. 2012. № 58. Р. 1231–1241.
- Horoshajlova M.V. Arhitektura dlja stohasticheskih LDPC-dekoderov c ispol'zovaniem jeffektivnoj ploshhadi kristalla na osnove PLIS. Vestnik Voronezhskogo gos. tehnich. un-ta. 2018. T. 14. № 1. S. 95-100 (in Russian).
- Horoshajlova M.V., Kuznecov A.V., Demihova A.S. Metodika opredelenija tipov shifrovanija linejny blochnyh kodov. Radiotehnika. 2024. T. 88. № 7. S. 40-44. DOI: https://doi.org/10.18127/j00338486-202407-08 (in Russian).
- Bashkirov A.V., Muratov A.V., Horoshajlova M.V., Sitnikov A.V., Ermakov S.A. Nizkoplotnostnye kody maloj moshhnosti dekodirovanija. Radiotehnika. T. 80. 2016. № 5. S. 32-37 (in Russian).
- Thi Bao Nguyen T., Nguyen Tan T., Lee H. Efficient QC-LDPC encoder for 5G New Radio. Electronics. 2019. № 8. Р. 668.

