350 rub
Journal Radioengineering №6 for 2025 г.
Article in number:
Evanescent electromagnetic fields of LP2m modes of coreless optical fibers
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202506-11
UDC: 535.92
Authors:

M.A. Abelmas1, O.V. Ivanov2

1 Ulyanovsk State Technical University (Ulyanovsk, Russia)

2 Ulyanovsk Branch of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the RAS (Ulyanovsk, Russia)

1 abelmax1998@mail.ru; 2 olegivvit@yandex.ru

Abstract:

In the calculation of modern fiber-optic sensors operating with the interaction of modes of contacting optical fibers, the approximation of linearly polarized modes is usually used. It is considered that the polarization direction at the cladding boundary coincides with the polarization direction inside the fiber and the longitudinal component of the field is not taken into account. However, in structures with interaction through the evanescent field at the boundary of the fiber cladding, the field can be non-uniform near the surface, and the longitudinal component can make a contribution comparable to the radial and azimuthal components. At the same time, the exact calculation of the spatial distribution of the field and the polarization direction over the entire cross-section of the fiber and at its surface has not been previously carried out.

The aim of this paper is to do an exact calculation of the hybrid modes of a coreless optical fiber and the spatial distribution of electric fields for different mode numbers. It also compares the vector distribution of the field for the LP21 mode inside the fiber and at the cladding surface.

The dependences of the mode propagation constants on the cladding radius are presented. A comparison of the longitudinal and transverse components of the electric fields at the fiber cladding boundary proves the significance of the longitudinal component in the formation of the evanescent electric field. The contribution of different components to the formation of the electric field is demonstrated depending on the radial mode number. Polarization characteristics of the electric fields at the cladding boundary are determined. The dependence of the field polarization direction on the azimuthal angle is presented. A comparison of the polarization vector inside and at the cladding surface is carried out, and a significant deviation of the vector under the fiber surface is revealed.

The practical significance of the presented results is important for finding the mode coupling coefficients, which are calculated when creating fiber-optic sensors based on contacting fibers.

Pages: 114-125
For citation

Abelmas M.A., Ivanov O.V. Evanescent electromagnetic fields of LP2m modes of coreless optical fibers. Radiotekhnika. 2025. V. 89.
№ 6. P. 114−125. DOI: https://doi.org/10.18127/j00338486-202506-11 (In Russian)

References
  1. Udd Je. Volokonno-opticheskie datchiki. Tehnosfera. 2008. S. 17 (in Russian).
  2. Chiang K.S., Liu Y., Liu Q., Rao Y. Optical sensing based on light coupling between two parallel long-period fiber gratings. Photonic Sensors. 2011. V. 1. № 3. P. 204–209.
  3. Tripathi S.M., Kumar A., Varshney R.K., Kumar Y.B.P., Marin E., Meunier J.-P. Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J. Lightwave Technol. 2009. V. 27. № 13. P. 2348.
  4. Kogelnik H., Schmidt R. Switched directional couplers with alternating Δβ. IEEE J. Quantum Elect. 1976. V. 12. № 7. P. 396–401.
  5. Chiang K.S., Ng M. N., Liu Y., Li S. Evanescent-field coupling between two parallel long-period fiber gratings. Proc. Lasers Electro-Opt. Soc. 2000 Ann. Meeting. 15–16 Nov. Rio Grande. 2000. P. 836–837.
  6. Hong Z., Li X., Zhou L., Shen X., Shen J., Li S., Chen J. Coupling characteristics between two conical micro/nano fibers: simulation and experiment. Opt. Express. 2011. V. 19. № 5. P. 3854.
  7. Wu Q., Semenova Y., Ma Y., Wang P., Guo T., Long J., Farrell G. Light coupling between a singlemode-multimode-singlemode (SMS) fiber structure and a long period fiber grating. J. Lightwave Technol. 2011. V. 29. № 24. P. 3683–3688.
  8. Baiad M.D., Gagné M., Lemire-Renaud S., De Montigny E., Madore W.-J., Godbout N., Kashyap R. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler. Opt. Express. 2013. V. 21. № 6. P. 6873.
  9. Cai Z., Liu F., Guo T., Guan, B.-O., Peng, G.-D., Albert J. Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber. Opt. Express. 2015. V. 23. № 16. Р. 20971.
  10. Schlangen S., Bremer K., Zheng Y., Isaak A., Wurz M. Manufacturing and characterization of asymmetric evanescent field polished couplers for grating assisted mode selective fiber coupling. P. Soc. Photo-opt. Ins. 2018. V. 10681. P. 1068116.
  11. Zhang W., Huang L., Gao F., Bo F., Xuan L., Zhang G., Xu J. Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber. Opt. Lett. 2012. V. 37. P. 1241–1243.
  12. Zhang C., Chiang K.S. Broadband optical fiber tap based on cladding-mode coupling. Opt. Eng. 2012. V. 51 № 7. Р. 075001.
  13. Ivanov O.V., Nikitov S.A., Guljaev Ju.V. Obolochnye mody opticheskih volokon, svojstva i primenenie. UFN. 2006. T. 49. № 2. S. 167–191 (in Russian).
  14. Lam P.K., Stevenson A.J., Love J.D. Bandpass spectra of evanescent couplers with long period gratings. Electron. Lett. 2000. V. 36. № 11. Р. 967–969.
  15. Bachim B.L., Ogunsola O.O., Gaylord T.K. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings. Opt. Lett. 2005. V. 30. № 16. P. 2080–2082.
  16. Jusupova L.I., Ivanov O.V. Interferometry na osnove vstavok opticheskih volokon s tonkoj serdcevinoj SM600 i SM450. Radiotehnika. 2019. T. 83. № 9. S. 74-78 (in Russian).
  17. Xu X., Ouyang X., Zhou A., Deng H., Yuan L. An integrated wavelength selective coupler based on long period grating written in twin-core fiber. Opt. Commun. 2019. V. 445. P. 1–4.
  18. Butov O.V., Tomyshev K.A., Nechepurenko I.A. Volokonnye brjeggovskie reshetki s naklonnymi shtrihami i sensory na ih osnove. UFN. 2022. T. 192. S. 1385 (in Russian).
  19. Manuilovich E.S., Tomyshev K.A., Butov O.V. Ultrastable combined planar‐fiber plasmon sensor. Sensors. 2019. V. 19. № 4245.
  20. Liu Y., Chiang K. S., Liu Q. Symmetric 3´3 optical coupler using three parallel long-period fiber gratings. Opt. Express. 2007. V. 15. № 10. P. 6494.
  21. Kim M.J., Chan F.Y.M, Paek U.-C., Lee B.H. Tunable add/drop filter for CWDM system using cladding mode coupling assisted by long-period fiber gratings. Proc. Optical Fiber Comm. Conf. and the National Fiber Optic Engineers Conf. 5–10 March. 2006. Anaheim. P. 3.
  22. Kritzinger R., Meyer J., Burger J. Investigation of the power coupling of novel wavelength-selective couplers incorporating axially symmetric long-period fiber gratings. S. Afr. J. Sci. 2011. V. 107. № 5/6. P. 703–705.
  23. Fang L., Jia H. Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings. Opt. Express. 2014. V. 22. № 10. P. 16621.
  24. Liu Q., Chiang K. S., Liu Y. Analysis of six-port optical fiber couplers based on three parallel long-period fiber gratings. J. Lightwave Technol. 2008. V. 26. № 18. P. 3277–3286.
  25. Chiang K.S., Chan F.Y.M., Ng M.N. Analysis of two parallel long-period fiber gratings. J. Lightwave Technol. 2004. V. 22. № 5. P. 1358–1366.
  26. Zhang W., Huang L., Gao F., Bo F. Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters. Opt. Express. 2013. V. 21. № 14. P. 1358.
  27. Абельмас М.А., Иванов О.В. Поверхностные электромагнитные поля оболочечных мод бессердцевинных волоконных световодов. Радиотехника и электроника. 2024. Т. 69. № 12. С. 1150–1161.
  28. Kawano K., Kitoh T. Introduction to optical waveguide analysis: solving maxwell’s equations and the schrodinger equation. N.Y.: Wiley. 2001.
  29. Iizuka K. Elements of the photonics. N.Y.: Wiley. 2002.
  30. Huang W.P. Coupled-mode theory for optical waveguides. J. Opt. Soc. Am. A. 1994. V. 11. № 3. P. 963-983.
  31. Erdogan T. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A. 1997. V. 14. № 8.
    P. 1760.
Date of receipt: 17.03.2025
Approved after review: 24.03.2025
Accepted for publication: 26.05.2025