350 rub
Journal Radioengineering №6 for 2025 г.
Article in number:
The algorithm for calculating the coordinates of the video navigation system of an unmanned aerial vehicle
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202506-03
UDC: 623.746.4-519
Authors:

I.R. Kabirov1, V.G. Bondarev2, D.V. Lopatkin3, S.V. Ippolitov4

1–4 MESC of Air Forces N.Е. Zhukоvsky and Yu.А. Gаgаrin Air Force Academy (Vоrоnеzh, Russia)

1 ilsur@inbox@gmail.com; 2 bondarevstis@mail.ru; 3 dimkaao@yandex.ru

Abstract:

Problem formulation. Unmanned aerial vehicles represent a dynamically developing class of aviation technology, and the success of their use in each new military conflict only reinforces this trend. Technical vision systems are of particular importance for the development of unmanned aviation, the most relevant area of application of which is navigation support for flight automation tasks. In navigation of unmanned aerial vehicles navigation, the requirements for its accuracy and noise immunity are increasing, while reducing the weight and dimensions of the equipment. An important problem for unmanned aircraft of military use is radar visibility, which is solved by using low-altitude flight, however, modern radio engineering systems for this mode cannot be used on small unmanned aerial vehicles due to their significant weight and dimensions. The integrity of the satellite navigation signal under conditions of electronic suppression is in great doubt. Therefore, the development of new methods, technical solutions and algorithms for vision systems in the navigation tasks of unmanned aerial vehicles is an urgent task.

Purpose. Development of an algorithm for calculating the coordinates of an unmanned aerial vehicle, which performs real-time processing of video data from a binocular machine vision system (BMVS) and performs the task of navigation in a low-altitude field under the condition of visibility of the Earth's surface.

Results. The possibility of using a BMVS in the task of unmanned aerial vehicles navigation is substantiated. An algorithm for calculating coordinates based on the binocular video current of the earth's surface has been developed, which provides almost autonomous navigation in low-altitude flight. Experimental studies of the developed algorithm have been carried out, which have shown its operability and compliance of errors with modern requirements for aircraft navigation systems.

Practical significance. The results obtained make it possible to develop practical recommendations for the construction of a video navigation system for unmanned aerial vehicles that can ensure the required accuracy in determining coordinates in low-altitude flight in conditions of suppression of control channels and global satellite navigation systems, increase autonomy, noise immunity and flight safety.

Pages: 24-39
For citation

Кабиров И.Р., Бондарев В.Г., Лопаткин Д.В., Ипполитов С.В. Алгоритм счисления координат видеонавигационной системы беспилотного летательного аппарата // Радиотехника. 2025. Т. 89. № 6. С. 24−39. DOI: https://doi.org/10.18127/j00338486-202506-03

References
  1. Prohorcov A.V., Balabaev O.S. Obzor besplatformennyh inercial'nyh navigacionnyh sistem otechestvennogo i importnogo proizvodstva. Izvestija TulGU. Ser. Tehnicheskie nauki. 2024. № 7. S. 351-354 (in Russian).
  2. Zimin A.S., Krinickij G.V. Primenenie mnogoantennyh sistem dlja povyshenija pomehozashhishhennosti sistem sputnikovoj radionavigacii na podvizhnyh ob#ektah. Trudy MAI. 2012. № 51. S. 22-38 (in Russian).
  3. Pel'por D.S. Giroskopicheskie sistemy. M.: Vysshaja shkola. 1988. 424 s. (in Russian).
  4. Vorob'ev M.L. Astronomicheskaja navigacija letatel'nyh apparatov. M.: Mashinostroenie. 1968. 283 s. (in Russian).
  5. Makarenko S.I. Protivodejstvie bespilotnym letatel'nym apparatam. Monografija. SPb: Naukoemkie tehnologii. 2020. 204 s. (in Russian).
  6. Moshkin V.I., Petrov A.A., Titov V.S. i dr. Tehnicheskoe zrenie robotov. Pod obshh. red. Ju.G. Jakushenkova. M.: Mashinostroenie. 1990. 168 s. (in Russian).
  7. Bondarev V.G. Videonavigacija letatel'nogo apparata. Nauchnyj vestnik Moskovskogo gos. tehnicheskogo un-ta grazhdanskoj aviacii. 2015. № 213(3). S. 65-72 (in Russian).
  8. Shakenov A.K. Sravnenie detektorov osobyh tochek izobrazhenij i ocenka ih statisticheskih harakteristik. Avtometrija. 2021. T. 57. № 1. S. 11-20 (in Russian).
  9. Ondrej Chum, Jiri Matas and Josef Kittler. Locally Optimized RANSAC. In: DAGM-Symposium. V. 2781. Lecture Notes in Computer Science. 2003. P. 236–243.
  10. Patent 2347240 (RF). № 2007115257/09. Sposob opredelenija mestopolozhenija i uglov orientacii letatel'nogo apparata otnositel'no vzletno-posadochnoj polosy i ustrojstvo dlja ego osushhestvlenija. Bondarev V.G., Guzeev A.E., Ippolitov S.V., Lejbich A.A. Zajavl. 23.04.07; opubl. 20.02.09; bjul. № 5. 11 s. (in Russian).
  11. Procenko V.V. Subpiksel'naja obrabotka izobrazhenij dlja vychislenija koordinat infrakrasnyh orientirov na fotomatrice v zadache avtomaticheskoj posadki bespilotnyh letatel'nyh apparatov. Transport: nauka, tehnika, upravlenie. Sb. OI/VINITI. 2021. № 4. S. 38–44 (in Russian).
  12. Verzhbickij V.M. Chislennye metody. Linejnaja algebra i nelinejnye uravnenija: Ucheb. posobie dlja vuzov. M.: Vysshaja shkola. 2000. 266 s. (in Russian).
  13. Patent 2790055 (RF) № 2022113770. Sposob kompensacii distorsii ob’ektiva. Batukov A.V., Bondarev V. G., Ippolitov S.V., Lopatkin D.V., Procenko V.V., Rogovenko O.N. Zajavl. 23.05.22; opubl. 14.02.23; bjul. № 5. 15 s. (in Russian).
  14. Devjaterikov E.A., Mihajlov B.B. Vizual'nyj odometr. Inzhenernyj zhurnal: nauka i innovacii. 2012. № 6(6). S. 68-82 (in Russian).
  15. Molchanov A.S., Kolomoec V.A. Cifrovye portrety tipovyh ob#ektov vozdushnoj razvedki. M.: Pero. 2025. 194 s. (in Russian).
Date of receipt: 11.03.2025
Approved after review: 19.03.2025
Accepted for publication: 26.05.2025