350 rub
Journal Radioengineering №5 for 2025 г.
Article in number:
The main provisions of the concept of the quality of service in hybrid orbital-terrestrial networks
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202505-17
UDC: 004.738, 621.391
Authors:

D.Yu. Ponomarev1

1 FSAU “MIT “ERA” (Anapa, Russia)

1 ponomarevdu@yandex.ru

Abstract:

The technologies of perspective satellite networks suggest their use to form an end-to-end information exchange, regardless of whether the network is terrestrial or non-terrestrial. In this case, the quality of service must be ensured throughout the reception/transmission path. This is directly related to the prospects of using satellite networks in the field of the Internet of Things, for example, to control various unmanned devices. Characteristics of the quality of service such as delay time and the loss probability directly affect the performance of tasks by such unmanned devices. The hybrid satellite networks are also supposed to be used to serve subscribers of 5G/6G networks, but this will require the placement of multi-satellite groupings in low and very low Earth orbits.

Thus, promising hybrid satellite networks use a variety of orbits that host a large number of spacecraft (with intersatellite lines), providing heterogeneous communication services, including to subscribers of terrestrial mobile networks. In order to prevent network congestion and maintain the given quality of service in a hybrid network, it is necessary to ensure the functioning of conformed end-to-end quality assurance functions.

The main purpose of this work is to provide the basic provisions of the concept of the quality of service in hybrid orbital-terrestrial networks. The main results are the multilevel approach, distributed management, topology-invariant method and wide using software-defined systems. The multi-level approach is based on a multi-agent organization of service quality provision with a hierarchy both by type of orbit and by functional purpose. As a topology-invariant method, it is proposed to use tensor analysis of networks, which provides the possibility of taking into account the process-structural interaction of information flows, the distribution of which across the network affects the quality of service. Software-defined systems allow a flexible approach to the distribution of functions and resources in a multi-agent system by using software-defined networks and software-defined radio.

The main results of this work can be used in the formulation of requirements for systems and complexes of perspective hybrid satellite orbital-terrestrial networks. Further, it will be used for multi-agent distributed system of quality of service provision for perspective hybrid satellite-terrestrial networks.

Pages: 157-165
For citation

Ponomarev D.Yu. The main provisions of the concept of the quality of service in hybrid orbital-terrestrial networks. Radiotekhnika. 2025. V. 89. № 5. P. 157−165. DOI: https://doi.org/10.18127/j00338486-202505-17 (In Russian)

References
  1. Пантелеймонов И.Н., Гераськов В.В., Ивкин А.Н. Перспективная архитектура SatWAN. XXVIII Междунар. форум Международной академии связи «Цифровая трансформация. Связь будущего». М.: Гос. ун-т просвещения. 2024. С. 77-82.
  2. Yin Y., Huang C., Wu D.F., Huang S., Ashraf M.W. A., Guo Q. Reinforcement learning-based routing algorithm in satellite-terrestrial integrated networks. Wireless Communications and Mobile Computing. 2021. V. 2021. P. 1-15.
  3. Zhang Z., Zhang W., Tseng F.H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE network. 2019. V. 33. № 1. P. 70-76.
  4. Do H.F., Zujkov M.A., Berezkin A.A., Kirichek R.V. Analiz metodov umen'shenija setevoj zaderzhki v gibridnyh orbital'no-nazemnyh setjah svjazi. 79-ja NTK Sankt-Peterburgskogo NTO RJeS. SPb: SPbGJeTU «LJeTI». 2024. S. 139-142 (in Russian).
  5. Cox S., Kost T., Fish D., Maier J. Autonomous Multi-Mission Orchestration for Small Satellite Constellations. Proc. of 38th Annual Small Satellite Conference, 2024. Utah University. Report № SSC24-IV-04. P. 1-10.
  6. Ponomarev D.Ju., Lacinnik A.A. Ocenka harakteristik processov peredachi informacii v kombinirovannoj sputnikovoj seti. Sistemy svjazi i radionavigacii: sb. tezisov. Krasnojarsk: AO «NPP «Radiosvjaz'». 2023. S. 127-130 (in Russian).
  7. Song B., Chen Y., Yang Q., Zuo Y., Xu S., Chen Y. On-Board Decentralized Observation Planning for LEO Satellite Constellations. Algorithms. 2023. № 16. P. 114-131.
  8. Cox S.A., Stastny N.B., Droge G.N., Geller D.K. Resource-constrained constellation scheduling for rendezvous and servicing operations. Journal of Guidance, Control, and Dynamics. 2022. № 45(7). P. 1202-1212.
  9. Picard G., Caron C., Farges J-L., Guerra J., Pralet C. et al. Autonomous Agents and Multiagent Systems Challenges in Earth Observation Satellite Constellations. International Conference on Autonomous Agents and Multiagent Systems. Londres. United Kingdom. 2021. P. 39-44.
  10. Sanchoyerto A., Solozabal R., Blanco B., Jimeno E., Aldecoa E. et al. Orchestration of Mission-Critical Services over an NFV Architecture. 15th IFIP International Conference on Artificial Intelligence Applications and Innovations. Hersonissos. Greece. 2019. P. 70-77.
  11. Nag S., Li A.S., Ravindra V., Net M.S., Cheung K-M., Lammers R., Bledsoe B. Autonomous scheduling of agile spacecraft constellations with delay tolerant networking for reactive imaging. Proc. of 12th International Conference on Scheduling and Planning Applications Workshop, Berkeley: Delft University of technology. 2019. P. 25-34.
  12. Nag S., Murakami D.D., Marker N.A., Lifson M.T., Kopardekar P.H. Prototyping operational autonomy for Space Traffic Management. Acta Astronautica, 2021. № 180. P. 489-506.
  13. Morozov A.V., Ponomarev D.Ju. Model' raspredelenija trafika v mnogourovnevoj infokommunikacionnoj seti special'nogo naznachenija. Modelirovanie, optimizacija i informacionnye tehnologii. 2021. 9(2). URL: https://moitvivt.ru/ru/journal/pdf?id=899 DOI: 10.26102/2310-6018/2021.32.1.024 (data obrashhenija: 08.10.2024) (in Russian).
  14. Morozov A.V., Ponomarev D.Ju. Koncepcija postroenija universal'noj programmno apparatnoj platformy. Voprosy oboronnoj tehniki. Ser. 16. Tehnicheskie sredstva protivodejstvija terrorizmu. 2022. № 11-12(173-174). S. 75-81 (in Russian.
  15. Bhoyar D., Kadam M., Sarode P. Review of Software Defined Integrated Satellite-Terrestrial Network. ICCCE 2019: Proceedings of the 2nd International Conference on Communications and Cyber-Physical Engineering. 2019. P. 333-340.
Date of receipt: 04.04.2025
Approved after review: 09.04.2025
Accepted for publication: 30.04.2025