350 rub
Journal Radioengineering №5 for 2025 г.
Article in number:
Implementation of the digital twin of the module for recognizing types of digital modulation of radio signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202505-11
UDC: 621.396.62
Authors:

V.K. Kurbanaliev1, M.V. Fesenko2

1,2 JSC “CNIRTI named after academician A.I. Berg” (Moscow, Russia)

1,2 post@cnirti.ru

Abstract:

Problem statement. The recognition of types of radio signal modulation is a significant task that is being solved in radio engineering systems of various applications. The article substantiates the relevance of creating a twin module for recognizing types of digital radio signal modulation.

Goal. Creation creation and implementation of a digital twin module for recognizing types of digital modulation of radio signals based on their statistical characteristics

Results. A digital twin of the digital signal modulation type recognition module based on cumulative analysis has been developed.

Practical significance. The developed algorithm for the dynamic formation of a training sample in the process of real operation eliminates the need for manual training of models when conditions change. The architecture of the adaptive cumulative analyzer makes it possible to optimize the selection of features depending on the noise level, modulation, and other factors affecting reception.

Pages: 105-112
For citation

Kurbanaliev V.K., Fesenko M.V. Implementation of the digital twin of the module for recognizing types of digital modulation of radio signals. Radiotekhnika. 2025. V. 89. № 5. P. 105−112. DOI: https://doi.org/10.18127/j00338486-202505-11 (In Russian)

References
  1. Cifrovye dvojniki. Nauch. serija «Prinjatie reshenij v upravlenii». Monografija. Pod red. P.A. Sozinova. M.: Radiotehnika. 2022. 312 s. (in Russian).
  2. Boschert S., Rosen R. Digital twin - the simulation aspect. In: Mechatronic Futures. Springer. 2016. P. 59–74.
  3. Cui T., et al. Performance Evaluation of Digital Twin for Cognitive Radio Systems. IEEE Systems Journal. 2022. V. 16(4). P. 5760–5770.
  4. Rasheed A., San O., Kvamsdal T. Digital twin: values, challenges and enablers. ASME Journal of Computing and Information Science in Engineering. 2020. V. 20(3). Р. 031002.
  5. Grieves M. Digital twin: manufacturing excellence through virtual factory replication. White Paper. 2014.
  6. Tao F., Qi Q., Liu A., Kusiak A. Digital twins and cyber – physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering. 2019. V. 5(4). P. 653–661.
  7. Leonov V.P., Shirjaev A.N. K tehnike vychislenija seminvariantov. Teorija verojatnosti i ee primenenie. 1959. T. 4. Vyp. 3. S. 342–355 (in Russian).
  8. Kendall M.Dzh., St'juart A. Teorija raspredelenij. M.: Nauka. 1966 (in Russian).
  9. Malahov A.N. Kumuljantnyj analiz sluchajnyh negaussovyh processov i ih preobrazovanij. M.: Sovetskoe radio. 1978. 376 s. (in Russian).
  10. Kurbanaliev V.K., Fesenko M.V., Gorbunov Ju.N. Ispol'zovanie kumuljantnogo analiza dlja raspoznavanija cifrovyh vidov moduljacii radiosignalov. Radiotehnika. 2024. T. 88. № 5. S. 39-49. DOI: https://doi.org/10.18127/j00338486-202405-04 (in Russian).
  11. Adzhemov S.S., Klenov N.V., Tereshonok M.V., Chirov D.S. Metody raspoznavanija vidov cifrovoj moduljacii signalov v kognitivnyh radiosistemah. Vestnik Moskovskogo universiteta. Ser. 3. Fizika. Astronomija. 2015. № 6. S. 19-27 (in Russian).
  12. Haykin S. Communication Systems. 5th Edition. Wiley. 2009. 608 p.
  13. Proakis J.G., Salehi M. Digital Communications. 5th Edition. Mc. Graw-Hill. 2007. 1150 p.
  14. Nguyen H.Q., Kim D. Deep Learning-Based Modulation Classification Using Time–Frequency Features. Sensors. 2021. V. 21(14).
    Р. 4847.
Date of receipt: 09.04.2025
Approved after review: 15.04.2025
Accepted for publication: 30.04.2025