350 rub
Journal Radioengineering №5 for 2025 г.
Article in number:
Digital twins in panoramic direction finding of electromagnetic radiation sources based on rough “binary-signed” statistics
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202505-08
UDC: 621.396.96
Authors:

Yu.N. Gorbunov1, A.I. Mosunov2, N.P. Dovgopoly3

1 JSC “CNIRTI named after academician A.I. Berg” (Moscow, Russia)

1 Fryazino branch of Kotelnikov Institute of Radioengineering and Electronics of RAS (Fryazino, Russia)

2,3 JSC “Corporation “Kometa” (Moscow, Russia)

1 gorbunоv26.10.48@gmail.com; 2 amosunov99@gmail.com

Abstract:

Panoramic direction finding of electromagnetic radiation sources by passive phased antenna arrays in radar and radio communication radio engineering systems should be carried out optimally, ensure electrodynamic equivalence (proximity of "digital twins"), the constant probability of false alarms, while there are limitations on hardware and software resources. In this regard, the article analyzes the method of "rough" (amplitude "binary -signed") statistics (RS) obtained by using a well–known system – a broadband filter, a limiter and a narrowband filter. However, this method works effectively in a single-signal mode in the absence of reflections from passive interference and the presence of dominant reflectors and/or chaotic pulsed active interference. It is assumed that electrodynamic equivalence in quantization of time and space is provided by the Kotelnikov – Shannon method (Nyqvist – Shannon method), however, there remains a question of implementing the equivalence of "digital twins" concerning the amplitude dynamic range and instrumental resolution of signals in a multi-signal environment in conditions of significant differences in the amplitude characteristics of twins, taking into account limitations on hardware and software resources.

The article analyzes a method for achieving high instrumental accuracy and resolution through the use of algorithms with chaotic parameters (varying conditions) for the formation of binary RS, which expands the spectrum, and narrow–band filtering by accumulating and increasing the size of spatial and temporal signal samples (bundles, apertures, fragments of "windows"). Also, the procedures of "stochastic linearization" and increasing the rate of convergence of measurements in the basic Monte Carlo method are used in RS. The results can be applied in radio engineering complexes, including radar systems designed for radio and radio engineering monitoring, bearing measurement (spatiotemporal processing of spatial frequencies – angular direction meters).

Pages: 78-89
For citation

Gorbunov Yu.N., Mosunov A.I., Dovgopoly N.P. Digital twins in panoramic direction finding of electromagnetic radiation sources based on rough “binary-signed” statistics. Radiotekhnika. 2025. V. 89. № 5. P. 78−89. DOI: https://doi.org/10.18127/j00338486-202505-08 (In Russian)

References
  1. Gorbunov Ju.N., Kulikov G.V., Shpak A.V. Radiolokacija: stohasticheskij podhod. Monografija. M.: Gorjachaja linija - Telekom. 2016. 576 s. (in Russian).
  2. Gorbunov Ju.N. Randomizirovannaja obrabotka signalov v radiolokacii i svjazi. Monografija. Germany, Saarbrücken: LAP LAMBERT Academic Publishing. 2015. 150 s. (in Russian).
  3. Bellami Dzh. Cifrovaja telefonija: Per. angl. Pod red. A.N. Berlina, Ju.N. Chernysheva. – M.: Jeko-Trendz. 2004. 640 s. (in Russian).
  4. Prokis Dzh. Cifrovaja svjaz': Per. s angl. Pod red. D.D. Klovskogo. M.: Radio i svjaz'. 2000. 797 s. (in Russian).
  5. Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki: Vvedenie v teoriju: Per. s angl. M.: Radio i svjaz'. 1986. 448 s. (in Russian).
  6. Kotel'nikov V.A. Teorija potencial'noj pomehoustojchivosti. M.: Gosjenergoizdat. 1956. 152 s. (in Russian).
  7. Metropolis N., Ulam S. The Monte Carlo metod. J. Amer. Statistical Assoc. 1949. V. 44. № 247. P. 335–341.
  8. Gorbunov Ju.N. Stohasticheskaja linearizacija pelenga v adaptivnyh antennyh reshetkah s grubymi prostranstvenno-vremennymi statistikami. Avtomatika i telemehanika. 2019. № 12. S. 103–114. DOI: 10.1134/S0005231019120067 (in Russian).
  9. Chernjak Ju.B. Korreljatory s ideal'nymi ogranichiteljami. Radiotehnika. 1965. T. 20. № 3 (in Russian).
  10. Gorbunov Ju.N. Grubye statistiki v radiolokacii: izmerenie pelenga. Radiotehnika. 2022. T. 86. № 10. S. 79–94. DOI: https://doi. org/10.181/27/j00338486-202210-10 (in Russian).
  11. Gorbunov Ju.N., Epifanov M.A. Pelengacija istochnikov jelektromagnitnogo izluchenija ob’emnymi malojelementnymi fazirovannymi antennymi reshetkami. Radiotehnika. 2023. T. 87. № 8. S. 128-142. DOI: https://doi.org/10.18127/j0033486-202308-20 (in Russian).
  12. Korn G.A. Modelirovanie sluchajnyh processov na analogo-cifrovyh mashinah. M.: Mir. 1968. 315 s. (in Russian).
  13. Sobol' I.M. Chislennye metody Monte-Karlo. M.: Nauka. 1973. 311 s. (in Russian).
  14. Voskresenskij D.I. Antenny s obrabotkoj signala: Ucheb. posobie dlja vuzov. M.: SAJNS-PRESS. 2002. 80 s. (in Russian).
  15. Pervozvanskij A.A. Poisk. M.: Nauka. 1970 (in Russian).
Date of receipt: 09.04.2025
Approved after review: 15.04.2025
Accepted for publication: 30.04.2025