350 rub
Journal Radioengineering №4 for 2025 г.
Article in number:
Mathematical modeling of radar images formed by synthetic-aperture radar
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202504-08
UDC: 621.396.96 + 51.001.57
Authors:

A.N. Tonkikh1, V.A. Kuznetsova2

1 LLC “Nauchno-proizvodstvennoe ob`edinenie “NaukaSoft” (Moscow, Russia)

2 Institute of Radio Electronics and Informatics, RTU MIREA (Moscow, Russia)

1 alex_tonkih@mail.ru; 2 abvthnk@gmail.com

Abstract:

When developing radar stations with synthesized antenna aperture, the task of synthesizing algorithms for processing radar signals under conditions of trajectory instabilities of the radar station carrier, as well as “migration” of signals through oblique range channels, is relevant. The study of such algorithms determines the need for a large amount of radar data obtained under different observational conditions and with different radar station characteristics. In addition, a separate task is the creation of a data bank of radar images of objects in the interests of training decoding operators and the development of automatic detection and recognition algorithms. The need for a large amount of primary and secondary data of radar observation make the development of a mathematical model of the path of formation of highly detailed radar images relevant.

The purpose of the work is to develop a mathematical model of the path of formation and processing of radar signal of radar station with synthesized antenna aperture.

The paper proposes a mathematical model of radar images formed by radar station with synthesized antenna aperture. The developed model includes solutions of the following problems: geometric modeling, diffraction of electromagnetic waves on the surface of objects of complex shape, stochastic modeling of reflection from the underlying surfaces, modeling of the path of formation and processing of the trajectory signal. The object surface is approximated as a set of facets and selected edges. When solving the diffraction problem, asymptotic methods are used: physical optics, equivalent currents, elementary boundary waves and the strict method of integral equations. The use of analytical expressions in solving the problem of diffraction on elementary surfaces allows us to calculate the scattered field by three points corresponding to the vertices of the triangular facet approximating the surface. The proposed model has a modular architecture, which allows to investigate, refine and modify the model of each component independently of the others.

Comparison of the results of modeling and field survey confirmed the performance of the mathematical model and showed its high reliability. The analysis of the results of application of the mathematical model proposed in this work allows us to speak about its performance and suitability for solving problems of information support of algorithms of primary and secondary processing of remote sensing data, performed with the use of radar.

Pages: 89-100
For citation

Tonkikh A.N., Kuznetsova V.A. Mathematical modeling of radar images formed by synthetic-aperture radar. Radiotekhnika. 2025.
V. 89. № 4. P. 89−100. DOI: https://doi.org/10.18127/j00338486-202504-08 (In Russian)

References
  1. Cvetkov O.E., Efimov A.V. Avtokorreljacionnaja funkcija dvumernogo signala RSA s migraciej po kanalam dal'nosti. Voprosy radiojelektroniki. 2008. № 1. S. 91--102 (in Russian).
  2. Morozov L.M., Shkol'nyj L.A. Vlijanie fluktuacij fazy signalov v RSA na izmeritel'nye svojstva radiolokacionnogo izobrazhenija. Nauchno-metodicheskie materialy po impul'snoj tehnike i diskretnoj obrabotke informacii. Sb. statej. pod red. V.T. Gorjainova. M.: VVIA im. prof. N. E. Zhukovskogo. 1981. S. 76-87 (in Russian).
  3. Radiolokacionnye sistemy vozdushnoj razvedki, deshifrirovanie radiolokacionnyh izobrazhenij / Pod red. L.A. Shkol'nogo. M.: VVIA im. N.E. Zhukovskogo. 2008. 530 s. (in Russian).
  4. Farhat N.H., Chan C.K. Three-dimensional imaging by wave-vector diversity. IEEE Trans. Antennas Propagat. 1981. V. 29. № 3. Р. 312-319.
  5. Mensa D.L., Halevi Sh., Ujejd G. Primenenie metodov kogerentnoj doplerovskoj tomografii dlja poluchenija izobrazhenij na SVCh.
    TIIJeR. 1983. T. 71. № 2. S. 76-84 (in Russian).
  6. Franceschetti G., Migliciano M., Riccio D., Schirinzi G. Saras: A synthetic aperture radar (SAR) raw signal simulator. IEEE Trans. Geosc. Remote Sensing. 1992. V. 30. № 1. Р. 110-123.
  7. Franceschetti G., Lanari R., Marzouk E.S. Efficient and high precision space-variant processing of SAR data. IEEE Trans. Aerosp. Electron. Syst. 1995. V. 31. № 1. Р. 227-236.
  8. Shkol'nyj L.A. Dva sposoba opisanija operatora zondirovanija pri sinteze sistemy obrabotki signalov RSA po koordinate putevaja dal'nost'. Nauchno-metodicheskie materialy po impul'snoj tehnike i diskretnoj obrabotke informacii. M.: VVIA im. prof. N.E. Zhukovskogo. 1981. S. 117-130 (in Russian).
  9. Shkol'nyj L.A. Utochnenie matematicheskogo opisanija operatora zondirovanija RSA s uchetom fluktuacij traektorii samoleta. Nauchno-metodicheskie materialy po impul'snoj tehnike i diskretnoj obrabotke informacii. M.: VVIA im. prof. N.E. Zhukovskogo. 1982. S. 96-103 (in Russian).
  10. Jarcev I.M., Prohorov A.G., Dmitriev I.N. Tehnologija sozdanija sistemy nejrosetevogo avtomaticheskogo raspoznavanija odinochnyh nazemnyh i nadvodnyh ob#ektov vooruzhenij, voennoj i special'noj tehniki na osnove sistemy ishodnyh dannyh, poluchennyh metodom matematicheskogo modelirovanija. Radiolokacija: teorija i praktika. M.: OOO Izdatel'stvo «Juniti-Dana». 2023. S. 299-315 (in Russian).
  11. Savchenko B.S., V'jukov N.A., Elizovetin I.V., Sobolev A.V. Reshenie zadach obnaruzhenija i identifikacii ob#ektov na radiolokacionnyh izobrazhenijah nejrosetevym metodom. Nauchno-tehnicheskij zhurnal po geodezii, kartografii i navigacii. Geoprofi. 2022. № 4.
    S. 13-17 (in Russian).
  12. Anfinogenov A.Ju., Shkol'nyj L.A. K voprosu o matematicheskom modelirovanii radiolokacionnyh portretov raspredelennyh ob#ektov. Radiotehnika. 1996. T. 60. № 10. S. 25-31 (in Russian).
  13. Kulemin G.P., Lucenko V.I. Obratnoe rassejanie millimetrovyh radiovoln. Radiofizicheskie issledovanija mirovogo okeana. Har'kov: IRJe NANU. 1992. S. 6-31 (in Russian).
  14. Ufimtsev P.Ya. Elementary edge waves and the physical theory of diffraction. Electromagnetics. 1991. V. 11. № 1-2. Р. 125-160 (in Russian).
  15. Lifanov I.K. Metod singuljarnyh integral'nyh uravnenij i chislennyj jeksperiment v matematicheskoj fizike, ajerodinamiki, teorii uprugosti i difrakcii voln. M.: TOO «Janus». 1995 (in Russian).
  16. Samohin A.B., Setuha A.V. Granichnoe gipersinguljarnoe integral'noe uravnenie s zapazdyvaniem dlja nestacionarnyh zadach rassejanija na ideal'no provodjashhih telah. Differencial'nye uravnenija. 2022. № 58(8). S.1090-1104. DOI: 10.31857/S037406412208009X (in Russian).
  17. Tonkih A.N. Vychislenie integralov tipa svertki ot znakoperemennyh funkcij v zadachah jelektrodinamiki. Sb. statej XII Mezhdunar.simpoziuma «Metod diskretnyh osobennostej v zadachah matematicheskoj fiziki MDOZMF-2005». Herson. 2005. S. 154-167 (in Russian).
  18. Tonkih A.N. Matematicheskaja model' nereguljarnoj kachki sudov v zadachah sinteza ih radiolokacionnyh izobrazhenij. Radiotehnika. 2011. T. 75. № 6. S. 90-95 (in Russian).
  19. Zajcev S.Je., Zubarev A.Je., Elizavetin I.V., Sobolev A.V., Tonkih A.N. Programmnyj kompleks obnaruzhenija iskusstvennyh ob#ektov na snimkah kosmicheskih RSA. Sb. statej XXX Vseross. simpoziuma «Radiolokacionnoe issledovanie prirodnyh sred». 2019. S. 31-36 (in Russian).
  20. Tonkih A.N. Ocenka vlijanija dvizhenija nabljudaemyh ob#ektov na kachestvo formiruemogo radiolokacionnogo izobrazhenija. Radiotehnika. 2008. T. 72. № 6. S. 22-26 (in Russian).
  21. Kuznecova V.A., Tonkih A.N. Matematicheskoe modelirovanie v zadachah geoprivjazki dannyh radiolokacionnogo nabljudenija. Internauka. 2023. № 16-1(286). S. 47-53. DOI 10.32743/26870142.2023.16.286.356600 (in Russian).
Date of receipt: 17.02.2025
Approved after review: 24.02.2025
Accepted for publication: 26.03.2025