350 rub
Journal Radioengineering №3 for 2025 г.
Article in number:
Estimation of the error vector magnitude in an industrial data transmission scenario under conditions of multipath propagation of spectrally efficient signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202503-07
UDC: 621.391.8
Authors:

A.S. Orlova1, S.B. Makarov2, S.V. Zavjalov3, I. Lavrenyuk4, S.V. Tomashevich5

1-5 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

1 ovsyannikova_as@spbstu.ru; 2 makarov@cee.spbstu.ru; 3 zavyalov_sv@spbstu.ru;
4 lavrenyuk_i@spbstu.ru; 5 tomashevich.s.v@sut.ru

Abstract:

Formulation of the problem. Ensuring high noise immunity of signal reception in rooms containing a large number of metal surfaces, structures and equipment (industrial scenario) is difficult due to multipath signal propagation. The efficiency of using classical waveforms with rectangular amplitude modulation pulses in these data transmission conditions is significantly reduced. It seems promising to use signals in which the shape of the modulation amplitude pulse has a pronounced bell-shaped appearance. This property will reduce the effect of distortion of the modulation symbol during multipath propagation and thereby increase the noise immunity of reception. Such signals include spectrally efficient signals, the duration of which exceeds the symbol duration, in particular, signals based on RRC pulses.

The goal is to determine the error vector magnitude in industrial scenario for an original room model with multipath propagation of spectrally efficient signals with a compact spectrum.

Results. It is shown that the transition to using signals with a smoothed amplitude pulse shape leads to a narrowing of the range and a decrease in peak EVM values. This is due to the fact that the pulse peak becomes narrower and introduces a lower level of intersymbol interference in conditions of multipath propagation. It is shown that in the case of using signals based on RRC pulses, which allow for an increase in spectral efficiency, the best results are achieved when using an MLSE equalizer with
EVM = 0,5% at all points of the room.

Practical significance. It is shown that in the considered industrial scenario, when using BPSK modulation, a data transfer rate of about 3,5 Mb/s can be provided, which meets the requirements for industrial sensors and video surveillance modules in low resolution.

Pages: 74-89
For citation

Orlova A.S., Makarov S.B., Zavjalov S.V., Lavrenyuk I., Tomashevich S.V. Estimation of the error vector magnitude in an industrial
data transmission scenario under conditions of multipath propagation of spectrally efficient signals. Radiotekhnika. 2025. V. 89. № 3. P. 74−89. DOI: https://doi.org/10.18127/j00338486-202503-07 (In Russian)

References
  1. Anderson J.B., Rusek F., Öwall V. Faster-than-nyquist signaling. Proceedings of the IEEE. Aug. 2013. V. 101. № 8. Р. 1817-1830. DOI: 10.1109/JPROC.2012.2233451.
  2. Gel'gor A.L., Gel'gor T.E. Novye formy impul'sov dlja signalov s chastichnym otklikom, obespechivajushhie vyigrysh po otnosheniju k signalam faster-than-nyquist. Radiotehnika. 2018. № 12. S. 39-48 (in Russian).
  3. Ovsjannikova A.S., Makarov S.B., Zav'jalov S.V., Volvenko S.V. Ocenka stepeni priblizhenija informacionnoj sistemy k granicam Shennona putem ispol'zovanija optimal'nyh po kriteriju maksimal'noj koncentracii jenergii v polose chastot signalov. Radiotehnika. 2023. T. 87. № 1. S. 5-22. DOI: https://doi.org/10.18127/j00338486-202301-01 (in Russian).
  4. Veedu S.N.K. Toward smaller and lower-cost 5G devices with longer battery life: an overview of 3GPP release 17 RedCap. IEEE Communications Standards Magazine. 2022. V. 6. № 3. P. 84-90.
  5. Makarov S.B. et al. Optimizing the shape of Faster-than-nyquist (FTN) signals with the constraint on energy concentration in the occupied frequency bandwidth. IEEE Access. 2020. V. 8. Р. 130082-130093. DOI: 10.1109/ACCESS.2020.3009213.
  6. Fan J., Guo S., Zhou X., Ren Y., Li G.Y., Chen X. Faster-than-nyquist signaling: an overview. IEEE Access. 2017. V. 5. Р. 1925-1940. DOI: 10.1109/ACCESS.2017.2657599.
  7. Forney G. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory. May 1972. V. 18. № 3. Р. 363-378. DOI: 10.1109/TIT.1972.1054829.
  8. Zhang G., Guo M., Shen Y. Comparison of low complexity receiver techniques for faster-than-nyquist signaling. 2016 CIE International Conference on Radar (RADAR). Guangzhou. China. 2016. P. 1-6. DOI: 10.1109/RADAR.2016.8059452.
  9. Tong M., Huang X., Zhang J.A. Frame-based decision directed successive interference cancellation for FTN signaling. 2022 IEEE Globecom Workshops (GC Wkshps). Rio de Janeiro. Brazil. 2022. P. 1670-1674. DOI: 10.1109/GCWkshps56602.2022.10008577.
  10. Jiang T. 3GPP standardized 5G channel model for IIoT scenarios: a survey. IEEE Internet of Things Journal. 2021. V. 8. 3GPP Standardized 5G Channel Model for IIoT Scenarios. № 11. P. 8799-8815.
  11. Osa J. Measurement based stochastic channel model for 60 GHz MM-wave industrial communications. IEEE Open Journal of the Industrial Electronics Society. 2023. V. 4. P. 603-617.
  12. Yun Z., Iskander M.F. Ray tracing for radio propagation modeling: principles and applications. IEEE Access. 2015. V. 3. Ray Tracing for Radio Propagation Modeling. P. 1089-1100.
  13. Sheikh M.U. Power angular measurements and ray tracing simulations at sub-THz frequencies in corridor. 2022 IEEE Wireless Communications and Networking Conference (WCNC). Austin. TX. USA IEEE. 2022. P. 1587-1592.
  14. Cebecioglu B.B. et al. Experimental analysis of 5G NR for indoor industrial environments. IEEE Access. 2024. V. 12. P. 89310-89321. DOI: 10.1109/ACCESS.2024.3419011.
  15. Shafik R.A., Rahman M.S., Islam A.R. On the extended relationships among EVM, BER and SNR as performance metrics. 2006 International Conference on Electrical and Computer Engineering. Dhaka. Bangladesh. 2006. P. 408-411. DOI: 10.1109/ICECE.2006.355657.
  16. Anderson J.B., Wiley John and Sons. Bandwidth efficient coding. IEEE Series on Digital and Mobile Communication Series. Incorporated 2017.
  17. Cebecioglu B.B. Experimental analysis of 5G NR for indoor industrial environments. IEEE Access. 2024. V. 12. P. 89310-89321.
  18. Goutam P. Bit synchronization and viterbi equalization for GSM BTS - Hardware implementation on TMS320C6424 TI DSP. 2012 Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP). Bangkok. Thailand IEEE. 2012. P. 319-323.
  19. Proakis J.G., Salehi M. Digital communications. 5 ed. Boston, Mass.: McGraw-Hill. 2008. 1150 p.
  20. Grossmann M., Matsumoto T. Nonlinear frequency domain MMSE turbo equalization using probabilistic data association. IEEE Communications Letters. April 2008. V. 12. № 4. P. 295-297. DOI: 10.1109/LCOMM.2008.071600.
  21. Bhatia G.S., Corre Y., Di Renzo M. Efficient ray-tracing channel emulation in industrial environments: an analysis of propagation model impact. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Gothenburg. Sweden. 2023. P. 180-185. DOI: 10.1109/EuCNC/6GSummit58263.2023.10188258.
  22. NR; Base Station (BS) Conformance Testing; Part 1: Conducted Сonformance Testing. Document TS 38.141-1, V18.2.0, 3GPP. 2023.
Date of receipt: 11.02.2025
Approved after review: 17.02.2025
Accepted for publication: 28.02.2025