
A.V. Korolev1, S.G. Rykov2, I.A. Sidorov3, A.G. Gudkov4, S.V. Chizhikov5
1,3-5 Bauman Moscow State Technical University (Moscow, Russia)
2 Ltd «Hyperion» (Moscow, Russia)
1 teleret@mail.ru; 2 brig001@mail.ru; 3 igorasidorov@yandex.ru; 4 profgudkov@gmail.com; 5chigikov95@mail.ru
Traditionally, microwave radiometers comprise direct gain receivers. In this case operating frequency band is limited by RF filters. However, the presence of strong interference signal in close vicinity of filter pass band normally observed in L- and S- band can make these filters too difficult to implement.
The transition to a super heterodyne circuit helps to reduce the band pass filters requirements. In this case parameters of the receiver will be determined by selected frequency band and noise characteristic of components used. The target of this article is to analyze various circuit solutions of radiometric receivers and formulate the noise characteristic requirements of their components.
The results obtained in this article are applicable in the design of local oscillator circuits for radiometers and other types of receivers.
The study was carried out at the expense of the grant of the Russian Science Foundation No. 22-19-00063 https://rscf.ru/project/22-19-00063.
Korolev A.V., Rykov S.G., Sidorov I.A., Gudkov A.G., Chizhikov S.V. Noise in L- and S-band superheterodyne radiometer receiver.
Radiotekhnika. 2024. V. 89. № 2. P. 146−151. DOI: https://doi.org/10.18127/j00338486-2024502-19 (In Russian)
- Kadygrov E.N. Mikrovolnovaja radiometrija termicheskoj stratifikacii atmosfery. M.: OOO «Pechatnyj salon Shans». 2020. 271 s. (in Russian).
- Leushin V.Ju., Gudkov A.G., Sidorov I.A., Korolev A.V., Rykov S.G., Chizhikov S.V., Agasieva S.V., Porohov I.O. Principy postroenija i puti dal'nejshego sovershenstvovanija mnogokanal'nyh mnogochastotnyh radiotermografov. Medicinskaja tehnika. 2022. №6 (336). S. 53-55 (in Russian).
- Leushin V.Ju., Sidorov I.A., Porohov I.O., Chizhikov S.V., Agasieva S.V., Agandeev R.V. Mnogokanal'nyj medicinskij 3D-radiotermograf. Radiotehnika. 2023. T. 87. № 2. S. 193−199. DOI: https://doi.org/10.18127/j15604136-202206-07 (in Russian).
- Mihajlov V.F., Bragin I.V., Bragin S.I. Mikrovolnovaja apparatura distancionnogo zondirovanija poverhnosti Zemli i atmosfery Sputnikovaja radiometrija. SPb: Izd-vo SPGUAP. 1998. 164 s. (in Russian).
- Sharkov E.A. Radioteplovoe distancionnoe zondirovanie Zemli: fizicheskie osnovy. V 2-tomah. T. 1. M.: IKI RAN. 2014. 544 s. (in Russian).
- Esepkina N.A., Korol'kov D.V., Parijskij Ju.N. Radioteleskopy i radiometry. M.: Nauka. 1973. 250 s. (in Russian).
- Rohde U.L., Rubiola E., Whitaker J.C. Microwave and wireless synthesizers: theory and design. John Wiley & Sons. 2021.
- Krejngel' N.S. Shumovye parametry radiopriemnyh ustrojstv. L.: Jenergija. 1969. 168 c. (in Russian)
- Wilson W.J., et al. L/S-band radiometer measurements of a saltwater pond. IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2002. V. 2. P. 1120-1122.
- Alekseev E.V. i dr. Supergeterodinnyj priemnik mikrovolnovoj radiometricheskoj sistemy. Materialy dokladov Mezhdunar. nauch.-praktich. konf. «Jelektronnye sredstva i sistemy upravlenija». Tomsk: Izd-vo Tomskogo gos. un-ta sistem upravlenija i radiojelektroniki. 2016. № 1-1. S. 7-10 (in Russian).
- Chenakin A. Microwave Frequency Synthesizers: A Tutorial. IEEE Microwave Magazine. 2023. V. 24. № 7. P. 29-40.