350 rub
Journal Radioengineering №11 for 2025 г.
Article in number:
Model of an optoelectronic microwave oscillator without amplifiers
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202511-23
UDC: 621.396
Authors:

I.Yu. Tatsenko¹, N.A. Melnikov², A.A. Emelyanov³, A. B. Ustinov⁴

¹‧²‧⁴Saint Petersburg Electrotechnical University (Saint Petersburg, Russia)

³JSC "KNIRTI" (Zhukov, Kaluga Region, Russia)

¹abitur.tatsenko@mail.ru, ²nikitamelnikov2503@gmail.com, ⁴Ustinov_rus@yahoo.com

Abstract:

This paper presents a theoretical model describing the formation of resonant characteristics of an optoelectronic microwave oscillator (OEO) without amplifiers. A fundamental feature of this oscillator is the absence of any amplifying elements in the circuit. The compensation of losses, which are inevitable during the propagation of the microwave signal in the loop, is provided by the energy of the laser's optical carrier. The developed model of the optoelectronic oscillator accounts for the reflections of the optical signal at the junctions of optical components and the reflections of the microwave signal at the junctions of RF components with different wave impedances. The influence of laser power, the half-wave voltage of the electro-optic modulator, and the optical fiber length on the formation of the resonant characteristics of the OEO without amplifiers is demonstrated. Using the developed OEO model, the relations between laser power, the half-wave voltage of the electro-optical modulator, optical losses in the modulator, and the optical fiber length was determined, defining the conditions at which OEO loop circuit will work in auto-oscillation mode. For a determination of the auto-oscillation threshold, nomograms are proposed to identify the parameter combinations for the OEO without amplifiers. The limitations of the model imposed by the onset of stimulated Brillouin scattering in the optical fiber are shown. The paper presents an analysis of the phase noise of the generated microwave signal using the Rubiola model for delay-line oscillators. The influence of laser power, optical fiber length, and laser relative intensity noise (RIN) on the phase noise of the generated microwave signal is demonstrated. The developed model and the results obtained in this work open new possibilities for the design and development of optoelectronic oscillators with low phase noise for applications in radar, telecommunications, and measurement technology.

A theory describing the resonant characteristics of OEO without amplifiers is proposed. In such OEO, loss compensation is achieved through the energy of the optical carrier. The influence of the parameters of OEO without amplifiers on its characteristics is demonstrated.

Pages: 185-192
For citation

Tatsenko I.Yu., Melnikov N.A., Emelyanov A.A., Ustinov A.B. Model of an optoelectronic microwave oscillator without amplifiers. Radioengineering. 2025. V. 89. № 11. P. 185−192. DOI: https://doi.org/10.18127/j00338486-202511-23 (in Russian)

References
  1. Ustinov A.B., Tatsenko I.Yu., Nikitin A.A., Kondrashov A.V., Shamrai A.V., Ivanov A.V. Printsipy postroeniya optoelektronnykh SVCh-generatorov. Chast II. Fotonika. 2021. 15(4). 334−347. (in Russian)
  2. Chembo Y.K. et al. Optoelectronic oscillators with time-delayed feedback. Reviews of Modern Physics. 2019. V. 91. № 3. P. 035006.
  3. Liu Q., Peng J., Yan J. Optoelectronic oscillators: Progress from classical designs to integrated systems. Photonics. MDPI. 2025. V. 12. № 2. P. 120.
  4. Li M. et al. Tutorial on optoelectronic oscillators. Apl Photonics. 2021. V. 6. № 6.
  5. Yao X.S., Maleki L. High frequency optical subcarrier generator. Electronics Letters. 1994. V. 30. № 18. P. 1525−1526.
  6. Belkin M.E. et al. Tunable RF‐band optoelectronic oscillator and optoelectronic computer‐added design model for its simulation. Microwave and Optical Technology Letters. 2011. V. 53. № 11. P. 2474−2477.
  7. Mikitchuk K., Chizh A., Malyshev S. Modeling and design of delay-line optoelectronic oscillators. IEEE Journal of Quantum Electronics. 2016. V. 52. № 10. P. 1−8.
  8. Nelson C.W. et al. Microwave optoelectronic oscillator with optical gain. IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE. 2007. P. 1014−1019.
  9. Zhou W. et al. 10 GHz dual loop opto-electronic oscillator without RF-amplifiers. Optoelectronic Integrated Circuits X. SPIE. 2008. V. 6897. P. 199−204.
  10. Tatsenko I.Yu., Ustinov A.B. Avtogeneratsiya maloshumyashchego sverkhvysokochastotnogo signala v optoelektronnom generatore s passivnym opticheskim usileniem. Zhurnal tekhnicheskoi fiziki. 2023. T. 93. № 11. S. 1645−1652. (in Russian)
  11. Tatsenko I.Yu. i dr. Issledovanie kharakteristik fotodetektora s vysokim fototokom pri peredache sverkhvysokochastotnogo radiosignala po optovoloknu. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika. 2020. T. 23. № 4. S. 48−56. (in Russian)
  12. Rubiola E. Phase noise and frequency stability in oscillators. Cambridge University Press. 2008. 220 p.
Date of receipt: 29.09.2025
Approved after review: 13.10.2025
Accepted for publication: 30.10.2025