350 rub
Journal Radioengineering №11 for 2025 г.
Article in number:
Non-reflective distributed/lumped frequency-selective microwave circuits: properties and application
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202511-07
UDC: 621.372
Authors:

G.A. Malyutin1

1 Tomsk State University of Control Systems and Radioelectronics (TUSUR) (Tomsk, Russia)

1 Research Institute of Communication Systems (Tomsk, Russia)

1 mr.mageorge@yandex.ru

Abstract:

Problem Statement. The presence of signal reflections at out-of-band frequencies is undesirable in a number of cases. This applies to multi-channel systems, to circuits containing nonlinear elements. The solution to the problem of reducing reflections while maintaining frequency-selective properties allows eliminating the negative impact of re-reflections on radio-electronic equipment. Therefore, the direction of creating non-reflective frequency-selective circuits and non-reflective filters based on them has recently begun to develop.

Purpose. To develop a method for forming the structure of non-reflecting distributed-concentrated circuits based on the construction of frequency plans and the analysis of the necessary physical properties of the elements of the structural diagram.

Results. A method for synthesizing the structure of non-reflective distributed-concentrated circuits has been proposed and developed, based on the construction of frequency plans and analysis of the necessary physical properties of the elements of the structural diagram. The concept of an absorber of reflected waves arriving at the circuit output from the source of reflected waves has been introduced. Such a source is a bandpass filter that reflects out-of-band frequencies with a reflection coefficient close to unity. A non-reflective distributed-concentrated circuit with bandpass characteristics acts as an absorber of reflected waves. Examples are given of the modeling and implementation of non-reflective distributed-concentrated circuits, including a section of coupled strip lines and buffer resonant loads in the diagonal arms of coupled strip lines with different impedance-frequency dependencies. The application of two different distributed circuits in non-reflective circuits for the design of non-reflective bandpass filters is shown. One of the distributed circuit options is coupled strip lines with a vertical dielectric substrate, which implements strong front electromagnetic coupling. The second variant demonstrates the achievability of strong electromagnetic coupling in a design with planar conductors over which a dielectric substrate with a third free strip line.

Practical significance. The developed method is used to form a structural diagram and select elements of non-reflective distributed-concentrated circuits. The considered variants of the circuit diagram can be used to design non-reflective microwave band-pass filters. The developed models of non-reflective circuits and their implementations are used as "traps" for reflected waves in microwave paths containing sources of reflected waves.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project No. FEWM-2023-0014, dated 16.01.2023.

Pages: 72-83
For citation

Malyutin G.A. Non-reflective distributed/lumped frequency-selective microwave circuits: properties and application. Radiotekhnika. 2025. V. 89. № 11. P. 72−83. DOI: https://doi.org/10.18127/j00338486-202511-07 (In Russian)

References
  1. Aristarhov G.M., Arsenin A.V. Sverhminiatjurnye vysokoizbiratel'nye fil'try SVCh v bazise raspredelenno-sosredo-tochennyh struktur. Antenny. 2007. Vyp. 7(122). S. 49–58 (in Russian).
  2. Aristarhov G.M., Arinin O.V. Vysokoizbiratel'nye fil'try SVCh v bazise raspredelenno-sosredotochennyh struktur na osnove shpilechnyh rezonatorov. Sb. trudov XI Mezhdunar. otraslevaja nauch.-tehnich. konf. «Tehnologii informacionnogo obshhestva» (Moskva. 15–16 marta 2017 g.). M.: OOO «Izdatel'skij dom Media pablisher». 2017. S. 190–191 (in Russian).
  3. Manchec A., Laporte C., Quendo C., Ezzeddine H., Clavet Y., Rius E., Favennec J-F., Potelon B. Hybrid lumped/distributed band-pass filter in IPD technology for ultra-wideband applications. 2011 IEEE MTT-S International Microwave Symposium. 2011. P. 1. DOI: 10.1109/MWSYM.2011.5972783.
  4. Yildiz S., Aksen A., Yarman S.B. Real Frequency Design of Multiband Matching Networks with Mixed Lumped-Distributed Elements and Foster Resonance Sections. 2018 18th Mediterranean Microwave Symposium (MMS). 2018. P. 187–190. DOI: 10.1109/MMS.2018.8611994.
  5. Aristarhov G.M., Arsenin A.V., Arinin O.V. Shemotehnicheskij bazis sverhminiatjurnyh vysokoizbiratel'nyh SVCh-fil'trov na osnove
    Y-zven'ev. Ch. 1. Bazovye Y-zven'ja. T-Comm: Telekommunikacii i transport. 2012. № 4. S. 42–45 (in Russian).
  6. Maljutin N.D., Chin' T.T., Maljutin G.A. Neotrazhajushhie fil'try SVCh (obzor). Zhurnal radiojelektroniki (obzor). 2024. № 4. DOI: 10.30898/1684-1719.2024.4.4 (in Russian).
  7. Aristarhov G.M., Arinin O.V., Kirillov I.N. Selektivnye svojstva dvuh- i trehrezonatornyh mnogostupenchatyh grebenchatyh struktur i vysokoizbiratel'nye fil'try na ih osnove. Sistemy sinhronizacii, formirovanija i obrabotki signalov. 2018. T. 9. № 4. S. 4–8. URL: http://media-publisher.ru/wp-content/uploads/2019/11/SI4-2019.pdf (data obrashhenija 19.05.2025) (in Russian).
  8. Beljaev B.A., Hodenkov S.A., Govorun I.V., Serzhantov A.M. Shirokopolosnyj vysokoselektivnyj mikropoloskovyj fil'tr na dvuhmodovyh rezonatorah. Doklady Rossijskoj akademii nauk. Ser. Fizika, tehnicheskie nauki. 2022. T. 503. № 1. S. 57–62. DOI: 10.31857/S2686740022010047 (in Russian).
  9. Beljaev B.A., Serzhantov A.M., Leksikov A.A., Bal'va Ja.F., Galeev R.G. Monolitnyj miniatjurnyj polosno-propuskajushhij fil'tr na mnogoprovodnikovyh poloskovyh rezonatorah. Pis'ma v ZhTF. 2021. T. 47. № 13, S. 16. DOI: 10.21883/PJTF.2021.13.51115.18785 (in Russian).
  10. Aristarhov G.M., Arinin O.V., Kirillov I.N. Vysokoizbiratel'nye fil'try na osnove grebenchatyh i vstrechno-grebenchatyh struktur s ogranichennym chislom rezonatorov. Radiotehnika. 2020. T. 84. № 1. S. 3-5. DOI: 10.18127/j00338486-202001(02)-04 (in Russian).
  11. Beljaev B.A., Hodenkov S.A., Govorun I.V., Serzhantov A.M. Mikropoloskovye fil'try s shirokimi polosami propuskanija. Pis'ma v ZhTF. 2021. T. 47. №. 7. S. 30. DOI: 10.21883/PJTF.2021.07.50796.18581 (in Russian).
  12. Erohin V.V. Verifikacija modeli integral'noj katushki induktivnosti dlja SVCh LC-fil'trov v Si- i SiGe-sistemah na kristalle. Vestnik SibGUTI. 2022. № 2 (58). S. 98–109. DOI: 10.55648/1998-6920-2022-16-2-94-109 (in Russian).
  13. Erohin V.V., Zav'jalov S.A. Avtomatizirovannyj sintez topologij integral'nyh sverhvysokochastotnyh LC-fil'trov s minimizaciej poter' v polose propuskanija. Omskij nauchnyj vestnik. 2023. № 4 (188). S. 152–161. DOI: 10.25206/1813-8225-2023-188-152-161 (in Russian).
  14. Erohin V.V., Zav'jalov S.A. Optimizacija topologij integral'nyh katushek induktivnosti dlja sinteza SVCh LC-fil'trov v Si/SiGe/GaAs-sistemah na kristalle. Vestnik SibGUTI. 2023. T. 17. № 3, S. 87105. DOI: 10.55648/1998-6920-2023-17-3-87-105 (in Russian).
  15. Patent № 2819096 C1 (RF). Poloskovyj neotrazhajushhij polosno-propuskajushhij perestraivaemyj fil'tr: № 2023123738: zajavl. 14.09.2023: opubl. 14.05.2024. Loshhilov A.G., Chin' T.T., Maljutin G.A.
  16. Patent № 2820780 C1 (RF), MPK H01P 1/203. Malogabaritnyj neotrazhajushhij polosno-propuskajushhij fil'tr: № 2024103313: zajavl. 10.02.2024: opubl. 10.06.2024. Chin' T.T., Maljutin N.D. (in Russian).
  17. Patent № 2820791 C1 (RF), MPK H01P 1/203. Neotrazhajushhij polosno-propuskajushhij fil'tr nechetnyh garmonik: № 2024103312: zajavl. 10.02.2024: opubl. 10.06.2024. Chin' T.T., Maljutin N.D. (in Russian).
  18. Vlostovskij Je.G. K teorii svjazannyh linij peredachi. Radiotehnika. T. 31. 1967. № 4. S. 28–35 (in Russian).
  19. Fel'dshtejn A.L., Javich L.R. Sintez chetyrehpoljusnikov i vos'mipoljusnikov na SVCh. Izd. 2-e, pererab. i dop. M.: Sovetskoe radio. 1971. 388 s. (in Russian).
  20. Yarman S.B. Design of ultra wideband power transfer networks. N.Y.: Wiley. 2010. 774 p.
  21. Filippovich G.A., Jancevich M.A. Gibkie approksimirujushhie funkcii dlja shirokopolosnogo soglasovanija. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. 2022. T. 25. № 2. S. 6–15. DOI: 10.32603/1993-8985-2022-25-2-6-15 (in Russian).
  22. Devjatkov G.N. Avtomatizirovannyj sintez shirokopolosnyh soglasujushhih ustrojstv, svjazyvajushhih proizvol'nye immitansy istochnika signala i nagruzki. Nauchnyj vestnik NGTU. 2004. № 1(16). S. 155–165 (in Russian).
  23. Samuilov A.A., Cherkashin M.V., Babak L.I. Metodika «vizual'nogo» proektirovanija cepej na sosredotochennyh jelementah dlja shirokopolosnogo soglasovanija dvuh kompleksnyh nagruzok. Doklady TUSUR. 2013. № 2(28). S. 30–39 (in Russian).
  24. Sintez, analiz i diagnostika jelektronnyh cepej. Mezhdunar. sb. nauchnyh trudov. pod red. V.V. Filaretova. Ul'janovsk: UlGTU. 2012. Vyp. 10. 280 s. (in Russian).
  25. Malyutin N.D., Chin' T.T. 3D konstrukcii svjazannyh linij i ih primenenie v CVCh-ustrojstvah. Zhurnal radiojelektroniki. 2024. № 5. DOI: 10.30898/1684-1719.2024.5.8.
  26. Nakajima M., Awai I., Fukuoka Y. A Directional Coupler of a Vertically Installed Planar Circuit Structure. IEEE Transactions on Microwave Theory and Techniques. 1988. V. 36. P. 1057–1063. DOI: 10.1109/22.3632.
  27. Sychev A.N., Struchkov S.M., Putilov V.N., Rudyi N.Y. A novel trans-directional coupler based on vertically installed planar circuit. 2015 European Microwave Conference (EuMC). 2015. P. 283–286.
  28. Malyutin N.D., Malyutina A.N., Malyutin G.A., Zabolotsky A.M. Split striplines with adjustable parameters and devices based on them. 29th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiC-o'2019). 2019. P. 06015. DOI: 10.1051/itmconf/20193006015.
  29. Malutin N.D., Loschilov A.G., Bolshanin I.V., Malutina A.N. Phase shifters based on split strip lines. 22nd International Crimean Conference “Microwave & Telecommunication Technology” (CriMiC-o'2012). 2012. P. 516–517.
  30. Ivancov I.A. Modal'noe razlozhenie pomehi v svjazannoj mikropoloskovoj linii pri udalenii signal'nyh provodnikov drug ot druga. Sistemy upravlenija, svjazi i bezopasnosti. 2023. № 3. S. 124–133. DOI: 10.24412/2410-9916-2023-3-124-133 (in Russian).
  31. Patent № 2801688 C1 (RF), MPK H04B 15/02, H05K 3/00, H05K 3/46. Sposob udalennoj trassirovki pechatnyh provod-nikov cepej s odnokratnym modal'nym rezervirovaniem: № 2022131709: zajavl. 06.12.2022: opubl. 14.08.2023. Gazizov T.R., Ivancov I.A. (in Russian).
  32. Gruszczynski S., Wincza K., Smolarz R. Design of Bi-level-microstrip quadrature directional couplers with indirectly coupled lines. 2019 IEEE Asia-Pacific Microwave Conference (APMC). 2019. P. 1437–1439.
Date of receipt: 02.07.2025
Approved after review: 14.07.2025
Accepted for publication: 30.10.2025