T.B. Klimenko1, S.A. Varnakov2, A.S. Yashchenko3, S.V. Krivaltsevich4
1-4 Omsk Scientific Center SB RAS (Institute of Radiophysics and Physical Electronics) (Omsk, Russia)
1,2,4 Omsk Scientific-Research Institute of Instrument Engineering (Omsk, Russia)
1 klimenko.tanya@bk.ru; 2 sergvarnkov@yandex.ru; 3 x_rays1@mail.ru; 4 kriser2002@mail.ru
When using overestimated values of soil parameters, the calculated resistance of the grounding electrodes will be increased and a larger number of electrodes will be required. This leads to an increase in the area of placement and the mass of the grounding device carried in the mobile radio nodes. If we take into account underestimated values of soil parameters, there is a risk of exceeding the permissible resistance of the grounding device spreading and not ensuring EMC and electrical safety. In this case, the definition of a soil model is of scientific and practical interest, which makes it possible to determine the parameters of the elements of the grounding device for organizing effective grounding. The aim of the research is to conduct a comparative analysis of the use of uniform layer, two-layer, three-layer of the soil of the Omsk region to determine the parameters of the elements of the grounding device of a mobile radio nodes operating in the high-frequency, taking into account electromagnetic compatibility. It is shown that depending on the selected model of soil structure representation, it is possible to obtain a different calculated number of grounding electrodes, the depth of penetration and the resistance of the electrode. The use of a three-layer soil model provides more detailed information for determining the parameters of the elements of the grounding device, allowing to reduce the impact of high-frequency impacts, in contrast to a more simplified representation of a uniform soil and two-layer soil model. The conducted comparative analysis of the application of uniform soil, two-layer, three-layer soil models showed the need to take into account the layering of low-resistance soil with a specific resistance from 12 to 25 Ohm m and a relative dielectric permittivity from 25 to 57 when designing a grounding device effective for ensuring EMC. The three-layer soil showed that the electrodes can be buried to a depth of 0.71 m without losing the efficiency of the grounding device and, as with the two-layer soil, also 3 grounding electrodes can be installed to ensure EMC, despite the fact that the equivalent resistance of the electrode in three-layer soil has values greater than in two-layer soil. Such a grounding device can be used for grounding portable, mobile high-frequency telecommunication complexes in soils with similar electrophysical properties.
The work was carried out according to the state task of the Omsk Scientific Center SB RAS (project registration number 125013101211-4).
Klimenko T.B., Varnakov S.A., Yashchenko A.S., Krivaltsevich S.V. Grounding of mobile radio nodes in soils with vertically inhomogeneities electrophysical properties. Radiotekhnika. 2025. V. 89. № 11. P. 53−61. DOI: https://doi.org/10.18127/j00338486-202511-05 (In Russian)
- Burgsdorf V.V., Jakobs A.I. Zazemljajushhie ustrojstva jelektroustanovok. M.: Jenergoatomizdat. 1987. 400 s. (in Russian).
- Grcev L. Impulse efficiency of ground electrodes. IEEE Transactions on Power Delivery. 2009. № 1(24). Р. 441-451. DOI: 10.1109/TPWRD.2008.923396.
- Asanov A.K., Dzholdoshbekov B.Zh., Dzhusupbekova N.K., Arkarchieva M.K. Issledovanie vlijanija soprotivlenija grunta na soprotivlenie zazemljajushhih ustrojstv (na primere Narynskoj oblasti). Problemy avtomatiki i upravlenija. 2022. № 2(44). S. 70-76 (in Russian).
- Koliushko D.G., Rudenko S.S. Jeksperimental'noe obosnovanie metodiki rascheta normirovannyh parametrov zazemljajushhego ustrojstva na osnove trehslojnoj modeli pochvy. Jelektrotehnika i jelektromehanika. 2018. № 1. S. 66-70. DOI: 10.20998/2074-272X.2018.1.11 (in Russian).
- Gorshkov A.V. Ocenka soprotivlenija zazemlitelja podstancii v mnogoslojnom grunte. Jelektrichestvo. 2014. № 2. S. 25-31 (in Russian).
- Ageeva L.A. Opredelenie jelektricheskih harakteristik dvuhslojnyh gruntov pri proektirovanii zazemljajushhih ustrojstv. Jelektrojenergetika glazami molodezhi: trudy VI mezhdunar. nauch.-tehnich. konf. (g. Ivanovo, 09–13 nojabrja 2015 g.). Po red., d.t.n., prof. V.V. Tjutikova. Ivanovo: Ivanovskij gos. jenergeticheskij un-t im. V.I. Lenina. 2015. T. 1. S. 400-403 (in Russian).
- Vedeneeva L.M., Chudinov A.V. Uchet neodnorodnosti grunta pri proektirovanii zazemljajushhih ustrojstv v razlichnyh regionah Permskogo kraja. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Ser. Jelektrotehnika, informacionnye tehnologii, sistemy upravlenija. 2016. № 18. S. 136-152 (in Russian).
- Borozdina E.D. Vysokochastotnye jeffekty v polevyh izmerenijah chastotno-zavisimyh parametrov grunta. Trudy Kol'skogo nauchnogo centra RAN. Ser. Tehnicheskie nauki. 2024. T. 15, № 2. S. 93-100. DOI: 10.37614/2949-1215.2024.15.2.007 (in Russian).
- PUJe Pravila ustrojstva jelektroustanovok (PUJe). Izd. 7-e. M.: Izd-vo NC JeNAS. 2003. Ch. I. 330 s. (in Russian).
- Klimenko T.B. Vysokochastotnoe zazemljajushhee ustrojstvo polevyh mobil'nyh kompleksov, adaptiruemoe k parametram grunta. Tehnika radiosvjazi. 2024. № 2(61). S. 51-64 (in Russian).
- Varnakov S.A., Suslov K.N., Jashhenko A.S., Krival'cevich S.V. Dijelektricheskie harakteristiki obrazcov pochv Arktiki i juga Zapadnoj Sibiri. Radiotehnika. 2022. T. 86. № 8. S. 37-44. DOI: https://doi.org/10.18127/j00338486-202208-04 (in Russian).
- SP 131.13330.2020 «SNiP 23-01-99 Stroitel'naja klimatologija» NIISF RAASN. Data vvedenija v dejstvie 25.06.2021. 154 s. (in Russian).
- SP 22.13330.2011 OSNOVANIJa ZDANIJ I SOORUZhENIJ Minregion Rossii. M.: OAO «NIC «Stroitel'stvo». 2011. Data vvedenija 20.05.2011. 166 s. (in Russian).
- Belov S.V. i dr. Sredstva zashhity v mashinostroenii: raschet i proektirovanie: Spravochnik. M.: Mashinostroenie. 1989. 368 s. (in Russian).

