350 rub
Journal Radioengineering №11 for 2025 г.
Article in number:
Generalized correlation integral of background radar in plane coordinates
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202511-01
UDC: 535.2
Authors:

V.V. Chapursky1, G.P. Slukin2, A.A. Filatov3

1–3 NII RET Bauman Moscow State Technical University (Moscow, Russia)

1 valch2008@yandex.ru; 2 niiret@bmstu.ru; 3 filatov@bmstu.ru

Abstract:

There is the problem of theoretical estimate of resolution in plane coordinates based on the derivation generalized correlation integrals (GCI) and generalized ambiguity functions (GAF) and their two-dimensional cross-section analysis when targets with small RCS are detected on short ranges and small height. The paper considers the theoretical derivation of GCI and GAF in plane coordinates for background radar in the approximation of the plane that allows to estimate the resolution in two-dimensional coordinates for various zones of detection volume. GCI and GAF cross-sections shape are obtained and studied, resolution estimate in horizontal plane zone is given. The proposed theoretical technique allows to give the theoretical estimate of target resolution in plane approximation.

Pages: 5-13
For citation

Chapursky V.V., Slukin G.P., Filatov A.A. Generalized correlation integral of background radar in plane coordinates. Radiotekhnika. 2025. V. 89. № 11. P. 5−13. DOI: https://doi.org/10.18127/j00338486-202511-01 (In Russian)

References
  1. Chernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz'. 1993. (in Russian).
  2. Glaser J.I. Bistatic RCS of complex objects near forward scatter. IEEE Trans. 1985. V. AES-21. P. 70-78.
  3. Chapurskij V.V. Raschet spektrov obrashhennyh gologramm i JePR slozhnyh ob’ektov pri rassejanii «vpered». Izvestija vuzov. Ser. Radiojelektronika. 1989. T. 32. № 7. S. 75-77 (in Russian).
  4. Blyakhman A.B. Multistatic forward scattering radar. Workshop on Advances in Radar methods: proceedings of PIERS. Baveno. Italy. 1998. P. 107-113.
  5. Bljahman A.B., Runova I.A. Bistaticheskaja jeffektivnaja ploshhad' rassejanija i obnaruzhenie ob’ektov pri radiolokacii na prosvet. Radiotehnika i jelektronika. 2001. T. 6. № 4. S. 424-432 (in Russian).
  6. Voprosy perspektivnoj radiolokacii. Gl. 7. Pod red. A.V. Sokolova. M.: Radiotehnika. 2003. 512 s. (in Russian).
  7. Alymov F.S., Razevig V.V., Sablin V.N., Chapurskij V.V. Fonovaja radiolokacija kak netradicionnyj metod obnaruzhenija dvizhushhihsja vozdushnyh ob’ektov. Vestnik MGTU im. N.Je. Baumana. Ser. Priborostroenie. 2004. № 4. S. 72-92 (in Russian).
  8. Patent GB 2240894 A (Velikobritanija). Haui R. Metod obnaruzhenija malozametnyh samoletov. New Scientist. V. 132. №1792. 1991. P.28. (Jekspress informacija. 1991. № 52. S. 5) (in Russian).
  9. Zakonomernost' projavlenija podvizhnosti ob’ekta i razvitie metodov obnaruzhenija, kontrolja i izmerenija. Pod. red. I.V. Prangishvili, A.N. Anuashvili. Sb. trudov RAN. M: IPU. 1993. Vyp. 1. 91 s. (in Russian).
  10. Anuashvili A.N. Novyj princip poluchenija izobrazhenija podvizhnogo ob’ekta. Sb. trudov RAN. M: IPU. 1993. Vyp. 1. S. 11-24 (in Russian).
  11. Anuashvili A.N., Vajs L.I., Mandrusov V.I. Vremennaja fonovaja golografija dvizhushhihsja ob’ektov. Sb. trudov RAN. M: IPU. 1993. Vyp. 1. S. 70-78 (in Russian).
  12. Ahobadze G.N. Razrabotka radioizmeritel'noj ustanovki dlja issledovanija podvizhnyh ob’ektov. Sb. trudov RAN. M: IPU. 1993. Vyp. 1. S. 79-84 (in Russian).
  13. Rutledzh D. Jenciklopedija prakticheskoj jelektroniki. M.: DMK Press. 2002. 522 s. (in Russian).
  14. Khristenko A.V. et al. Magnitude and spectrum of electromagnetic wave scattered by small quadcopter in X-Band. IEEE Transactions on Аntennas and Propagation. 2018. V. 66. Is. 4. P. 1977-1984.
Date of receipt: 14.04.2025
Approved after review: 01.10.2024
Accepted for publication: 30.10.2025