350 rub
Journal Radioengineering №10 for 2025 г.
Article in number:
Improvement of accuracy and computational cost in analysing wire antennas and scatterers using CMA
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202510-23
UDC: 621.396
Authors:

T.P. Dang1, Т.R. Gazizov2, M.T. Nguyen3

1, 2 Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia)

3 MIREA - Russian Technological University (Moscow, Russia)

1 dang.p.2213-2023@e.tusur.ru; 2 talgat.r.gazizov@tusur.ru; 3 nguen_m@mirea.ru

Abstract:

Problem statement. Antennas and scatterers play a critical role in telecommunications technologies. Accurate analysis is essential for optimizing designs, reducing costs, and predicting real-world behavior. Characteristic mode analysis is a widely used method for studying these interactions, offering insights into how the structural shape and parameters affect radiation and scattering characteristics. Traditional characteristic mode analysis often relies on modal significance to identify significance modes; however, this approach does not fully consider the properties of the eigencurrent and the excitation source, which can lead to potential inaccuracies in determining significant modes.

Aim. Develop an algorithm to identify the most significant modes for analysing the characteristics of antenna and scatterers when using characteristic mode analysis and presents the verification of the analysis results of the corner reflector structure using characteristic mode analysis and the effectiveness of the algorithm used.

Results. Two algorithms have been developed to improve both the accuracy and the computational efficiency in analyzing wire antenna and scatterers using characteristic mode analysis. The first algorithm considers the properties of the eigencurrent and the excitation source to determine the significant modes. The second algorithm reduces the computational cost while maintaining high precision. The accuracy and effectiveness of these two algorithms have been demonstrated in the analysis of dipole antenna and a variety of corner reflector as scatterers.

Practical significance. The proposed algorithms can be used to identify significant modes in the analysis of wire antenna and scatterer structures, thereby making the optimization of these structures using characteristic mode analysis more accurate.

Pages: 189-202
For citation

Dang T.P., Gazizov T.R., Nguyen M.T. Improvement of accuracy and computational cost in analysing wire antennas and scatterers using CMA. Radiotekhnika. 2025. V. 89. № 10. P. 189−202. DOI: https://doi.org/10.18127/j00338486-202510-23 (In Russian)

References
  1. Vilar E. Antennas and propagation: a telecommunications system subject. IEE Colloquium on Teaching Antennas and Propagation to Undergraduates. London. UK. 1988. P. 6.
  2. Falconi M. Forward scatter radar for air surveillance: characterizing the target-receiver transition from far-field to near-field regions. Remote Sens. 2017. V. 9. №1. P. 50, doi: 10.3390/rs9010050.
  3. Elias B. B. Q. A review of antenna analysis using characteristic modes. IEEE Access. 2021. V. 9. P. 98833–98862. doi: 10.1109/ACCESS.2021.3095422.
  4. Harrington R., Mautz J. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971. V. 19. №5. P. 622–628. doi: 0.1109/TAP.1971.1139999.
  5. Garbacz R., Turpin R. A generalized expansion for radiated and scattered fields. IEEE Trans. Antennas Propag. 1971. V. 19. №3. P. 348–358. doi: 10.1109/TAP.1971.1139935.
  6. Dang T. P., Hasan A. F. A., Gazizov T. R. Analyzing the wire scatterer using the method of moments with the step basis functions. 2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). St. Petersburg. Russian Federation. 2024. P. 1–8. doi: 10.1109/WECONF61770.2024.10564653.
  7. Harrington R., Mautz J. Computation of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971. V. 19. №5. P. 629–639. doi: 10.1109/TAP.1971.1139990.
  8. Yikai C., Wang C. F. Characteristic modes: Theory and applications in antenna engineering. John Wiley & Sons. 2015.
  9. Cabedo F. M. Systematic design of antennas using the theory of characteristic modes. Diss. Universitat Politècnica de València. 2007.
  10. Harrington R. F. Matrix methods for field problems. Proc. IEEE. 1967. V. 55. №2. P. 136–149. doi: 10.1109/PROC.1967.5433.
  11. Wang N., Richmond J., Gilreath M. Sinusoidal reaction formulation for radiation and scattering from conducting surfaces. IEEE Trans. Antennas Propag. 1975. V. 23. №3. P. 376–382. doi: 10.1109/TAP.1975.1141080.
  12. Griesser T., Balanis C. Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction. IEEE Trans. Antennas Propag. 1987. V. 35. №10. P. 1137–1147. doi: 10.1109/TAP.1987.1143987.
  13. Helmi G., Ali K., Philippe P. and Oussmane L. P. Experimental results and numerical simulation of the target RCS using Gaussian beam summation method. Adv. Sci. Technol. Eng. Syst. J. 2018. V. 3. №3. P. 01–06. doi: 10.25046/aj030301.
  14. Zan G., Guo L., Liu S. Scattering characteristics of the multi-corner reflector based on SBR method. 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Hangzhou. China. 2018. P. 1–4. doi:  10.1109/ISAPE.2018.8634124.
  15. Nguyen M. T. Innovative approaches to the design of sparse wire-grid antennas: development of algorithms and evaluation of their effectiveness. Systems of Control, Communication and Security. 2024. No. 4. P. 1–47. doi: 10.24412/2410-9916-2024-4-001-047 (in Russian).
Date of receipt: 24.05.2025
Approved after review: 02.06.2025
Accepted for publication: 30.10.2025