350 rub
Journal Radioengineering №10 for 2025 г.
Article in number:
Electrodynamic modeling of the operating chamber of a microwave sterilizer with slot excitation element
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202510-22
UDC: 621.37: 621.385.69
Authors:

V.V. Komarov1, V.B. Baiburin2, V.M. Doroshenko3, I.I. Artyukhov4, A.A. Nikiforov5

1-5 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

1 baiburinvb@rambler.ru; 2 vyacheslav.komarov@gmail.com; 3 dorvalentina9@gmail.com; 4 ivart54@mail.ru; 5 ieei_director@mail.ru

Abstract:

Sterilization of surgery instruments in an important preliminary stage of any medical operation. Microwave energy can be successfully used for these purposes. The distribution of electromagnetic fields of different modes in the rectangular cavity chamber of a microwave sterilizer mainly depends on the excitation element of the resonator. At the same time, the influence of the shape and location of this element in the design of the sterilizer remains poorly understood.

Analysis of electromagnetic fields near the surface of metal objects irradiated with microwave energy for various options for placing a slot excitation element on the walls of the operating chamber was the goal of this work.

Using a 3-D numerical model based on the finite element method, the tangential component of the electric field above the surface of a metal plate irradiated with a microwave energy in the operating chamber of a microwave sterilizer was investigated. In this case, the plate is placed in a plastic container with an immersion medium (water), the electrophysical properties of which depend on the temperature. The factors that have the greatest influence on the magnitude of the field strength in the interaction region have been established.

The obtained numerical data can be used to reduce the metal consumption of the waveguide excitation element of the operating chamber of the sterilizer, which is currently used, and at the same time to increase the efficiency of microwave decontamination of pathological microflora during sterilization of medical instruments.

Pages: 184-188
For citation

Komarov V.V., Baiburin V.B., Doroshenko V.M., Artyukhov I.I., Nikiforov A.A. Electrodynamic modeling of the operating chamber of a microwave sterilizer with slot excitation element. Radiotekhnika. 2025. V. 89. № 10. P. 184−188. DOI: https://doi.org/10.18127/j00338486-202510-22 (In Russian)

References
  1. Bajburin V.B., Balakin M.I., Komarov V.V., Luneva I.O., Nikiforov A.A., Meshhanov V.P. Bystryj metod polnoj dekontaminacii v SVCh jelektromagnitnom pole. Voprosy jelektrotehnologii. 2022. № 2(35). S. 27-30 (in Russian).
  2. Bajburin V.B., Meshhanov V.P., Luneva I.O., Komarov V.V., Nikiforov A.A., Fomin A.A., Doroshenko V.M., Balakin M.I., Kirkica V.A. Jeksperimental'nye rezul'taty SVCh-sterilizacii metallicheskih instrumentov medicinskogo naznachenija. Biomedicinskaja radiojelektronika. 2023. № 6. S. 77-82 (in Russian).
  3. Bajburin V.B., Komarov V.V., Artjuhov I.I., Meshhanov V.P., Doroshenko V.M. Vlijanie zagruzki rabochej kamery mikrovolnovogo sterilizatora na naprjazhennost' jelektricheskogo polja v oblasti vzaimodejstvija. Voprosy jelektrotehnologii. 2024. № 3(44). S. 17-21 (in Russian).
  4. Rogov I.A., Nekrutman S.V. Sverhvysokochastotnyj nagrev pishhevyh produktov. M.: Agoropromizdat. 1986. 351 s. (in Russian).
  5. Hong J.S. Effect of a modulated source on a microwave cavity. IEEE Microwave and Guided Wave Letters. 1994. V. 4. № 2. P. 43-44.
  6. Plaza-Gonzalez P., Catala-Civera J.V., Sanchez-Hernandez D. Effect of mode-stirrer configuration on dielectric heating performance in multimode microwave applicator. IEEE Transactions on Microwave Theory and Techniques. 2005. V. 53. № 5. P. 1699-1706.
  7. Kosolap V.Ju., Kolomejcev V.A., Karpov D.I. Jelektricheskoe pole v SVCh-kamere rezonatornogo tipa pri trehshhelevom bokovom sposobe vozbuzhdenija. Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta. 2008. № 4. S. 95-98 (in Russian).
  8. Ahn S.-H., Jeong C.-H., Lim D.-M., Lee W.-S. Kilowatt-level power-controlled microwave applicator with multiple slotted waveguides for improving heating uniformity. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 7. P. 2867-2875.
  9. Ratanadecho P., Aoki K., Akahori M. The characteristics of microwave melting of frozen packed beds using a rectangular waveguide. IEEE Transactions on Microwave Theory and Techniques. 2002. V. 50. № 6. P. 1495-1502.
  10. Meixner J. The behavior of electromagnetic fields at edges. IEEE Transactions on Antennas and Propagation. 1972. V. 20. № 4.
    P. 442-446.
Date of receipt: 11.08.2024
Approved after review: 14.08.2025
Accepted for publication: 30.09.2025