
S.N. Boyko1, I.A. Medvedev2, I.M. Trukhachev3
1-3 JSC “Science Research Institute of Space Devices Engineering” (Moscow, Russia)
1 boyko_sn@orkkniikp.ru; 2 medvedev_ia@orkkniikp.ru; 3 trukhachev_im@orkkniikp.ru
Problem definition. Navigation antenna modules are widely used in modern GNSS equipment. At the same time high-precision positioning is required in such areas as geodesy and construction. In order to improve the accuracy characteristics of navigation equipment there are requirements to noise coefficient, phase center stability, bandstop level, backlobes level of radiation pattern and using maximum number of operating frequency bands. These requirements could be fulfilled due to such technical solutions as a wideband ground plane for backlobes rejection, a low-noise amplifier, a wideband antenna with a stable phase center.
Purpose. To propose a realization of navigation antenna module of L1, L2, L3, L5 bands for using in high-precision navigation
equipment.
Results. The technical solutions used in the development of functional units of the navigation antenna module are demonstrated. A prototype of the navigation antenna module for L1, L2, L3, L5 bands has been produced. The noise coefficient of the prototype does not exceed 3 dB, the phase center stability does not exceed 2.4 mm, the level of the bandout rejection exceeds 40 dB, the level of backlobes rejection reaches 40 dB.
Practical significance. The offered antenna module can be used in the high-precision navigation equipment.
Boyko S.N., Medvedev I.A., Trukhachev I.M. High-frequency navigation antenna module for L1, L2, L3, L5 bands. Radiotekhnika. 2025. V. 89. № 1. P. 129−140. DOI: https://doi.org/10.18127/j00338486-202501-12 (In Russian)
- Zhou Y., Chen C.C., Volakis J.L. Dual band proximity-fed stacked patch antenna for tri-band GPS applications. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 1. Р. 220-223.
- Falade O.P., Rehman M.U., Gao Y., Chen X.D., Parini C.G. Single feed stacked circular polarized antenna for triple band GPS receivers. IEEE Trans. Antennas Propagation. 2012. V. 60. № 10. Р. 4479–4484.
- Liu Y., Shi D., Zhang S., Gao Y. Multiband Antenna for Satellite Navigation System. IEEE Antennas and Wireless Propagation Letters. 2016. V. 15. Р. 1329-1332.
- Bojko S.N., Isaev A.V., Mar'janov V.B., Truhachev I.M. Mikropoloskovaja antenna GNSS jetazherochnogo tipa s vstrechnym pitaniem antennyh jelementov. Antenny. 2020. № 2(264). S. 29-40. DOI: 10.18127/j03209601-202002-04 (in Russian).
- Wang Z., Liu H., Fang S., Cao Y. A Low-cost dual-wideband active GNSS antenna with low-angle multipath mitigation for vehicle applications. Progress in Electromagnetics Research. 2014. V. 144. Р. 281-289.
- Sun C., Zheng H., Liu Y. Analysis and design of a low-cost dual-band compact circularly polarized antenna for GPS application. IEEE Transactions on Antennas and Propagation. 2016. V. 64. № 1. Р. 365-370.
- Sun C., Wu Z., Bai B. A novel compact wideband patch antenna for GNSS application. IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 12. Р. 7334-7339.
- Bojko S.N., Isaev A.V., Mar'janov V.B. Malogabaritnyj dvuhdiapazonnyj antennyj modul' dlja priemnikov global'nyh sputnikovyh navigacionnyh sistem GLONASS/GPS. Radiotehnika i jelektronika. 2020. T. 65. № 6. S. 551-558 (in Russian).
- Liu Q., Liu Y., Wu Y., Su M., Shen J. Compact wideband circularly polarized patch antenna for CNSS applications. IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. Р. 1280-1283.
- Tamjid F., Foroughian F., Thomas Chris M., Ghahreamani A., Kazemi R., Fathy Aly E. Toward high-performance wideband gnss antennas-design tradeoffs and development of wideband feed network structure. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 8. Р. 5796-5806.
- Filippov V., Tatarnicov D., Ashjaee J., Astakhov A., Sutiagin I. THE first dual-depth dual frequency choke ring. Proceeding of the 11th International Technical Meeting of the Satellite Division of ION. Nashville. September 15-18 1998. Р. 1035-1040.
- Sciré-Scappuzzo F., Makarov S.N. A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane. IEEE Transactions on Antennas and Propagation. 2009. V. 57. № 1. Р. 33-46.
- Emara M.K., Hautcoeur J., Panther G., Wight J.S., Gupta S. Surface Impedance engineered low-profile dual-band grooved-dielectric choke ring for GNSS applications. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 3. Р. 2008-2011.
- Taghdisi E., Ghaffarian M.S., Mirzavand R. Low-profile substrate integrated choke rings for GNSS multipath mitigation. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 3. Р. 1706-1718.
- Lee Y., Ganguly S., Mitra R. Tri-band (L1, L2, L5) GPS antenna with reduced baskloubes. 28 General Assambly of International Union of Radio Science. URSI-GA. New Delhy. India. 2005.
- Bojko S.N., Kuharenko A.S., Jaskin Ju.S. Primenenie jekrana na osnove metamateriala dlja otsechki mnogoluchevosti antenn sputnikovyh sistem navigacii. Antenny. 2015. № 7(185). S. 63-69 (in Russian.
- Klionovski K.K. Teoreticheskie i jeksperimental'nye issledovanija kruglyh poluprozrachnyh jekranov dlja antenny radionavigacionnogo priemnika. Antenny. 2012. № 7(182). S. 46–54 (in Russian).
- Tatarnikov D.V., Generalov A.A. Vognutye poluprozrachnye jekrany dlja otsechki polja v nerabochej oblasti uglov antenny. Antenny. 2018. № 10(186). S. 3-14 (in Russian).
- McKinzie W.E. III, Hurtado R., Klimczak W. Artifical magnetic conductor technology reduced size and weight for precision GPS antenna. Presented at the Institute on Navigation National Technical Meeting. San Diego. CA. Jan. 28-30 2002. Р. 1-12.
- Baggen R., Martinez-Vazquez M., Leiss J., Holzwarth S., Drioli L.S., de Maagt P. Low profile GALILEO antenna using EBG technology. IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 3. Р. 667-674.
- Ruvio G., Amman M.J., Bao X. Radial EBG Cell Layout for GPS Patch Antennas. Dublin Institute of Technology. School of Electrical and Electronic Engineering. Articles. 2009-06-18.
- Alam M.S., Islam M.T., Misran N. Performance investigation of a Uni-planar compact electromagnetic bandgap (UC-EBG) structure for wide bandgap characteristics. Asia-Pacific Symposium on electromagnetic Compatibility (APEMC). 2012. Р. 637-640.
- Vendik I.B., Vendik O.G. Metamaterialy i ih primenenie v tehnike sverhvysokih chastot (obzor). Zhurnal tehnicheskoj fiziki. 2013. T. 83. Vyp. 1. S. 3-28 (in Russian).
- Avgari F.S.A., Kubalova A.R., Maksimov A.P. Mikropoloskovyj jellipticheskij fil'tr s realizaciej na rezonatorah odinakovoj jelektricheskoj dliny. Trudy uchebnyh zavedenij svjazi. 2017. T. 3. № 4. S. 5-15 (in Russian).
- Bhavarthe P.P., Rathod S.S., Reddy K.T.V. A Compact dual band gap electromagnetic band gap structure. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 1. P. 596-600.
- Abdenov A.Zh., Rubanovich M.G., Hrustalev V.A. Ocenka pogreshnosti formul dlja rascheta induktivnosti jelementov v mikro-poloskovom ispolnenii. Jelektrosvjaz'. 2011. № 5. S. 42-46 (in Russian).
- Shashkov A.A., Bojko S.N., Egiazarjan A.M., Koryshev O.V., Truhachev I.M. Proektirovanie vibratornyh antenn s reaktivnymi vkljuchenijami. Monografija. M.: Radiotehnika. 2024. 160 s. (in Russian).
- Kovitz J.M., Choi J.H., Rahmat-Samii Y. Supporting wide-band circular polarization. IEEE Microwave. Magazine. 2017. V. 18. № 5. Р. 91–104.
- McKinzie W.E., Hurtado R., Klimczak W. Artificial magnetic conductor technology reduces size and weight for precision GPS antennas. Proceedings of the 2002 National Technical Meeting of the Institute of Navigation. San Diego. Jan. 28-30 2002. Р. 448-459.
- Sievenpiper D., Zhang L., Broas R.F.J., Alexopolous N.G., Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques. 1999. V. 47. № 11. Р. 2059-2074.