350 rub
Journal Radioengineering №1 for 2025 г.
Article in number:
Planar spiral two-arm antenna for unmanned aerial vehicle
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202501-11
UDC: 621.396.6
Authors:

D.G. Korol1

1 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 Dan0932@yandex.ru

Abstract:

Problem Statement. Due to the fact that currently unmanned aerial vehicles of the aircraft type perform a wide range of tasks such as radio reconnaissance, data relay, cargo transportation over long distances, for which it is necessary to provide communication with the board, from which it is expected to receive high quality of transmitted information, as well as the required data transfer rate. On the drone with such a dynamic distribution of the frequency resource, it is advisable to place broadband antenna systems that allow you to work on several frequencies, switch between them and solve several problems simultaneously. For example, transmit collected data and navigate in space. In addition, broadband antennas with circular polarization are often used as elements of antenna arrays of direction-finding systems, as well as for radio communication with a satellite and navigation. One of the varieties of such antennas is a two-arm spiral Archimedes antenna, which can be made on a printed circuit board and placed inside the drone. Due to the design, the antenna is small-sized. However, its practical implementation faces the following difficulties: to perform matching in a wide frequency band using a matching-transforming device, to ensure compliance with the phase difference of 180° between the feed points of the spiral; to eliminate the spread of the radiation pattern into several lobes; to ensure a low cross-polarization component.

Goal Development and experimental testing of the Archimedes spiral antenna, which should provide a wide operating frequency band from 1.2 to 6 GHz, while forming a single-beam radiation pattern and having a low cross-polarization component. To simulate the emitter in the wing of a drone.

Results. A radiator in the form of a two-arm Archimedes spiral antenna has been developed, providing operation and forming a single-beam radiation pattern in the frequency range of 1.2…6 GHz, while the cross-polarization component within the main beam was no more than minus 10 dB. Based on numerical simulation using the finite difference time domain method in CST Microwave Studio, an antenna design was created and measurements of the antenna mock-up were carried out in an anechoic chamber. The measurement results confirm the design results. Numerical simulation of the antenna characteristics was carried out taking into account the influence of the drone wing, and an alternative conformal design of the radiator was proposed.

Practical significance. An antenna was manufactured, the measured characteristics of which correspond to the results of numerical simulation. Given the priority of developing antenna systems for unmanned aerial vehicles, the created antenna is suitable in terms of weight and size characteristics and meets all the requirements for the radiator of the future digital antenna array of the drone.

The work was prepared within the framework of the state assignment No. FSFF-2023-0005.

Pages: 120-128
For citation

Korol D.G. Planar spiral two-arm antenna for digital antenna array of unmanned aerial vehicle. Radiotekhnika. 2025. V. 89. № 1.
P. 120−128. DOI: https://doi.org/10.18127/j00338486-202501-11 (In Russian)

References
  1. Chirov D.S., Lobov E.M. Vybor signal'no-kodovoj konstrukcii dlja komandno-telemetricheskoj linii radiosvjazi s bespilotnymi letatel'nymi apparatami srednej i bol'shoj dal'nosti. T-Comm: Telekommunikacii i transport. 2017. T. 11. № 10. S. 21-28 (in Russian).
  2. Kandaurova E.O., Chirov D.S. Razrabotka programmnogo kompleksa intellektual'noj perestrojki rabochih chastot dlja sistem kognitivnogo radio. Jelektrosvjaz'. 2021. № 2. S. 43-47. DOI: 10.34832/ELSV.2021.15.2.006 (in Russian).
  3. Titov K.D. Principy postroenija sverhshirokopolosnogo kanala svjazi na bespilotnom letatel'nom apparate vertoletnogo tipa legkogo klassa. Trudy MAI. 2022. № 122. DOI: 10.34759/trd-2022-122-12 (in Russian).
  4. Schippers H., et al. Conformal phased array with beam forming for airborne satellite communication. 2008 International ITG Workshop on Smart Antennas. Darmstadt. Germany. 2008. Р. 343-350. DOI: 10.1109/WSA.2008.4475580.
  5. Starovojtov E.I., Kozlov K.V., Golius A.B., Russanov V.I. Sravnenie vozmozhnostej primenenija privjaznogo ajerostata i BPLA dlja
    antennyh izmerenij pri ispytanijah RLS. Jelektromagnitnye volny i jelektronnye sistemy. 2023. T. 28. № 6. S. 48−65.
    DOI: https://doi.org/10.18127/j15604128-202306-06 (in Russian).
  6. Bitaev E.S., Murashkin A.V., Obysov A.V., Suhanov V.V., Amozov E.V., Vasil'ev D.A. Razrabotka i issledovanie sposoba formirovanija special'nogo amplitudnogo i fazovogo raspredelenija v mikropoloskovoj sisteme pitanija sverhshirokopolosnoj linejnoj pechatnoj antennoj reshetki. Jelektromagnitnye volny i jelektronnye sistemy. 2020. T. 25. № 5. S. 41−49. DOI: 10.18127/j15604128-202005-05 (in Russian).
  7. Yinusa K.A. A dual-band conformal antenna for GNSS applications in small cylindrical structures. IEEE Antennas and Wireless Propagation Letters. June 2018. V. 17. № 6. Р. 1056-1059. DOI: 10.1109/LAWP.2018.2830969.
  8. Vorona M.S., Gusarov A.A., Onufrej A.Ju. Obnaruzhenie i sverhrazreshenie malorazmernyh letatel'nyh apparatov na osnove chas-
    totno-fazomodulirovannyh signalov. Jelektromagnitnye volny i jelektronnye sistemy. 2021. T. 26. № 4. S. 60−66.
    DOI: https://doi.org/10.18127/j15604128-202105-07 (in Russian).
  9. Egorova E.V., Rybakov A.N., Aksjaitov M.H. Algoritmy avtomaticheskogo obnaruzhenija i raspoznavanija malokontrastnyh radiolokacionnyh ob#ektov s ispol'zovaniem shumopodobnyh shirokopolosnyh signalov. Jelektromagnitnye volny i jelektronnye sistemy. 2021. T. 26. № 1. S. 21−30. DOI: https://doi.org/10.18127/j15604128-202101-01 (in Russian).
  10. Sljusar V. Radiolinii svjazi s BPLA. Primery realizacii. Jelektronika: Nauka, Tehnologija, Biznes. 2010. № 5. S. 56–60 (in Russian).
  11. Lerner I.M. K voprosu optimizacii amplitudno-chastotnyh harakteristik kanalov svjazi s FMN-n-signalami, postroennyh na osnove teorii razreshajushhego vremeni. T-Comm: Telekommunikacii i transport. 2019. T. 13. № 9. S. 36-49 (in Russian).
  12. Lerner I.M., Fajzulin R.R., Rjabov I.V. Optimizirovannyj algoritm ocenki propusknoj sposobnosti kanalov svjazi, funkcionirujushhih na baze teorii razreshajushhego vremeni. Radiotehnika. 2022. T. 86. № 4. S. 91-109. DOI: 10.18127/j00338486-202204-13 (in Russian).
  13. Vasin A.A., Terehin O.V. Rupornaja antenna dlja bespilotnogo letatel'nogo apparata malogo klassa. Tezisy dokladov 19-j Mezhdunar. konf. «Aviacija i kosmonavtika». M.: Izd-vo «Pero». 2020. S. 335-336 (in Russian).
  14. Vinayagamoorthy Kalyany, Coetzee Jacob, Jayalath Dhammika. Microstrip to parallel strip balun as spiral antenna feed. IEEE Vehicular Technology Conference. 2012. Р. 1-5. DOI: 10.1109/VETECS.2012.6240118.
  15. Lao Jia, Jin Ronghong, Geng, Junping. UWB spiral antenna with parabolic reflector. Proceedings of the XXIXth URSI General Assembly in Chicago. 2008.
  16. Piksa P., Mazanek M. A Self-complementary 1.2 to 40 GHz spiral antenna with impedance matching. Radioengineering. 2006. V. 15. № 3. Р. 15-19.
  17. Baard Charl, Liu Yulang, Nikolova Natalia. Ultra-wideband low-cost high-efficiency cavity-backed compound spiral antenna. Electronics. 2020. V. 9. P. 1399. DOI: 10.3390/electronics9091399.
  18. Fumeaux C., Baumann D., Vahldieck R. Finite-volume time domain analysis of a cavity backed archimedean spiral antenna. IEEE Transactions on Antennas and Propagation. 2006. V. 54. Р. 844-851.
  19. Mohamad Sarah, Cahill Robert, Fusco Vincent. Performance enhancement of a wideband spiral antenna using a stepped ground plane. Microwave and Optical Technology Letters. 2014. V. 56. DOI: 10.1002/mop.28156.
  20. Balanis C.A. Modern Antenna Handbook. 2007. DOI: 10.1002/9780470294154.
  21. Dobychina E.M., et al. Unmanned aerial vehicle antenna measurement using anechoic chamber. TEM Journal. 2020. V. 9. № 4.
    Р. 1480-1487.
  22. Lit'evye poliamidy sposobny sovershit' revoljuciju v proizvodstve BPLA – jekspert [website]. URL: https://anav.ru/news/tpost/4xjy2xf5b1-litevie-poliamidi-sposobni-sovershit-rev (in Russian).
Date of receipt: 19.12.2024
Approved after review: 23.12.2024
Accepted for publication: 26.12.2024