
T.Ya. Shevgunov1
1 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1 shevgunov@gmail.com
Problem statement. Contactless detection of human vital signs is a relevant area of research that forms a scientific basis for solving the problem of reliable human detection and preliminary assessment of their physical condition. Timely detection of people who have remained motionless for a long time is critical in cases where it is necessary to make decisions on whether to carry out active rescue operations or not in cases where there is a possibility that after natural or man-made disasters living people, motionless or fixed by external objects, remain blocked in cavities formed from collapsed and damaged panels used in the construction of buildings and structures. The conducted analysis of human vital signs showed that the signal generated by the breathing process, during which quasi-periodic movements of the chest wall occur due to rhythmic changes in lung volume, has the greatest power. It was shown that such a process in the received radar response manifests itself as a random signal, the properties of which can be described by the model of a cyclostationary random process. This representation is a prerequisite for developing an algorithm for identifying a breathing signal in a secondary radar signal based on identifying characteristic cyclic frequencies in estimates of spectral correlation functions.
Goal the aim of the work is to develop an algorithm for detecting signs of vital activity of a stationary person in the form of an algorithm for digital processing of secondary radar signals based on estimating the parameters of cyclostationary models of breathing signal representation.
Results. The article presents a block diagram of the developed algorithm for processing secondary radar signals to identify characteristic cyclic frequencies specific to breathing signals of a stationary person. The main procedure of the algorithm consists in sequential processing of signals contained in the range lines of the radar frame, and includes preliminary processing to remove low-frequency offset and high-frequency noise, forming an estimate of the spectral correlation function and calculating pseudopower based on it, selecting cyclic frequencies exceeding a variable threshold. The operation of the algorithm is demonstrated on experimental data obtained using a radar system emitting signals with step frequency modulation.
Practical significance. The proposed algorithm for detecting signs of human breathing in secondary signals processed by a radar system can be used in developing new and upgrading existing technical solutions, such as contactless health and safety monitoring systems for objects, highly specialized solutions designed to detect survivors in rubble or to help people with disabilities.
The study was supported by state assignment of the Ministry of Education and Science of the Russian Federation, research projects No. FSFF-2023-0005
Shevgunov T.Ya. The development of the algorithm for detecting a non-moving human based on cyclostationary features of the respiration signals. Radiotekhnika. 2025. V. 89. № 1. P. 58−71. DOI: https://doi.org/10.18127/j00338486-202501-05 (In Russian)
- Cardillo E., Li C., Caddemi A. Embedded heating, ventilation, and air-conditioning control systems: From traditional technologies toward radar advanced sensing. Review of Scientific Instruments. V. 92. 2021. P. 061501. DOI: 10.1063/5.0044673.
- Mercuri M., Lu Y., Polito S., Wieringa F., Liu Y.-H., van der Veen A.-J., Van Hoof C., Torfs T. Enabling Robust Radar-Based Localization and Vital Signs Monitoring in Multipath Propagation Environments. IEEE Transactions on Biomedical Engineering. V. 68, no. 11.
Nov. 2021. P. 3228-3240. DOI: 10.1109/TBME.2021.3066876. - Marjuhnenko V.S., Kireev D.S., Orlovskij V.M. Ohrannye mnogopozicionnye radiolokacionnye sistemy: model', topologija, struktura. Jelektromagnitnye volny i jelektronnye sistemy. 2021. T. 26. № 1. S. 31−44. DOI: https://doi.org/10.18127/j15604128-202101-04 (in Russian).
- Gudkov A.G., Tihomirov V.G., Popov V.V., Solov'ev Ju.V., Chizhikov S.V. Miniatjurizacija radiometricheskogo SVCh-priemnika medicinskogo mnogokanal'nogo mnogochastotnogo radiotermografa. Jelektromagnitnye volny i jelektronnye sistemy. 2022. T. 27.
№ 6. S. 5−12. DOI: https://doi.org/10.18127/j15604128-202206-01 (in Russian). - Cardillo E., Li C., Caddemi A. Millimeter-wave radar cane: a blind people aid with moving human recognition capabilities. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. V. 6. № 2. June 2022. P. 204-211. DOI: 10.1109/JERM.2021.3117129.
- Ayena J.C., Chioukh L., Otis M.J.-D., Deslandes D. Risk of falling in a timed up and go test using an UWB radar and an instrumented insole. Sensors. V. 21. 2021. P. 722. DOI: 10.3390/s21030722.
- Chen K.-M., Huang Y., Zhang J., Norman A. Microwave life-detection systems for searching human subjects under earth-quake rubble or behind barrier. IEEE Transactions on Biomedical Engineering. V. 47. № 1. Jan. 2000. P. 105-114. DOI: 10.1109/10.817625.
- Pham L., Paul M., Prasad P. Noncontact detection of cardiopulmonary activities of trapped humans in rescue relief events. IEEE Access. V. 10. 2022. P. 75680-75692. DOI: 10.1109/ACCESS.2022.3190902.
- Richards M.A. Fundamentals of Radar Signal Processing. 2nd ed. USA. NY. New York: McGraw-Hill, 2013. 894 p.
- Islam S.M.M., Boric-Lubecke O., Lubecke V.M., Moadi A.-K., Fathy A.E. Contactless radar-based sensors: recent advances in vital-signs monitoring of multiple subjects. IEEE Microwave Magazine. V. 23. № 7. July 2022. P. 47-60. DOI: 10.1109/MMM.2022.3140849.
- Wang J., Wang X., Zhu Z., Huangfu J., Li C., Ran L. 1-D Microwave imaging of human cardiac motion: an ab-initio investigation. ieee transactions on microwave theory and techniques. V. 61. №. 5. May 2013. P. 2101-2107. DOI: 10.1109/TMTT.2013.2252186.
- Chmurski M., Mauro G., Santra A., Zubert M., Dagasan G. Highly-optimized radar-based gesture recognition system with depthwise expansion module. Sensors. V. 21. 2021. P. 7298. DOI: 10.3390/s21217298.
- Chihman V.N., Solnushkin S.D., Smirnov V.Ju., Molodcov V.O. Izmerenie parametrov reflektornogo vzdragivanija. Biomedicinskaja radiojelektronika. 2024. T. 27. № 1. S. 64-70. DOI: https://doi.org/10.18127/j15604136-202401-08 (in Russian).
- Gillani N., Arslan T. Unobtrusive detection and monitoring of tremors using non-contact radar sensor. Proceedings of the 2021
4th International Conference on Bio-Engineering for Smart Technologies. France. Paris. 8-10 Dec. 2021. P. 1-4.
DOI: 10.1109/BioSMART54244.2021.9677856. - Blumrosen G., Uziel M., Rubinsky B., Porrat D. Noncontact tremor characterization using low-power wideband radar technology. IEEE Transactions on Biomedical Engineering. V. 59. № 3. March 2012. P. 674-686. DOI: 10.1109/TBME.2011.2177977.
- Kolbasko I.V., Pivkin I.G. Pechurin V.V., Vikulova Ju.M., Podrjadchikov D.R. Jekstremal'noe nakoplenie-obnaruzhenie signala pri nepreryvnom radiolokacionnom nabljudenii. Jelektromagnitnye volny i jelektronnye sistemy. 2019. T. 24. № 8. S. 50−54. DOI: https://doi.org/10.18127/j15604128-201908-07 (in Russian).
- Madzhd A., Kazakov L.N., Silant'ev A.B. Ispol'zovanie radiolokacionnyh signalov s ortogonal'nymi poljarizacijami v zadache obnaruzhenija nahodjashhihsja za pregradoj biologicheskih ob’ektov. T-Comm: Telekommunikacii i transport. 2022. T. 16. № 10.
S. 19-27. DOI: https://doi.org/10.36724/2072-8735-2022-16-10-19-27 (in Russian). - Gavrilov K.Ju., Shevgunov T.Ja. Razrabotka imitacionnoj modeli dyhanija cheloveka i analiz ee harakteristik. Materialy XIII Vseross. nauch.-tehnich. konf. «Radiolokacija i radiosvjaz'». M.: IRJe RAN. 2019. S. 272–276 (in Russian).
- Napolitano A. Cyclostationary processes and time series: theory, applications, and generalizations. academic press. Elsevier. 2019. 626 p. DOI: https://doi.org/10.1016/C2017-0-04240-4.
- Kozlov R., Gavrilov K., Shevgunov T., Kirdyashkin V. Stepped-frequency continuous-wave signal processing method for human detection using radars for sensing rooms through the wall. Inventions. MDPI. V. 7. № 3. 2022. P. 79. DOI: 10.3390/inventions7030079.
- Nguyen C., Park J. Stepped-frequency radar sensors: theory, analysis and design. Germany Berlin/Heidelberg: Springer. 2016. 133 p.
- Gavrilov K.Ju., Igonina Ju.V., Linnikov O.N., Panjavina N.S. Ocenka razreshajushhej sposobnosti po dal'nosti pri ispol'zovanii signalov so stupenchatoj moduljaciej. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2015. T. 13. № 5. S. 23-32 (in Russian).
- Oppengejm A., Shafer R. Cifrovaja obrabotka signalov. Izd. 3-e, ispr. M.: Tehnosfera. 2019. 1049 s. (in Russian).
- Gavrilov K.Ju., Igonina Ju.V., Linnikov O.N. Ocenka oshibok izmerenija koordinat celej v radarah zondirovanija cherez stenu. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2019. T. 19. № 1. S. 46-54. DOI: 10.18127/j20700814-201901-06 (in Russian).
- Gavrilov K.Ju., Kamenskij I.V., Kirdjashkin V.V., Linnikov O.N. Modelirovanie i obrabotka radiolokacionnyh signalov v MATLAB: Ucheb. posobie / Pod red. K.Ju. Gavrilova. M.: Radiotehnika. 2020. 264 s. (in Russian).
- Holton T. Digital signal processing: principles and applications. UK. Cambridge: Cambridge University Press. 2021. 1062 p.
DOI: 10.1017/9781108290050. - Harris F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE. 1978.
V. 66. № 1. P. 51-83. DOI: 10.1109/PROC.1978.10837. - Ljem G. Analogovye i cifrovye fil'try. Raschet i realizacija: Per. s angl. M.: Mir. 1982. 302 s. (in Russian)
- Shevgunov T., Efimov E. Two-dimensional FFT algorithm for estimating spectral correlation function of cyclostationary random processes. 2019 Signal Processing Symposium. Krakow. Poland. 17-19 сентября 2019. P. 216-220.
- Shevgunov T., Efimov E., Kirdyashkin V., Kravchenko T. The Development of the algorithm for estimating the spectral correlation function based on two-dimensional fast fourier transform. Springer. Cham. Advances in Signal Processing, Intelligent Systems Reference Library. 2020. V. 184. P. 75–86.
- Shevgunov T.Ja., Efimov E.N. Razrabotka algoritma ocenki spektral'noj korreljacionnoj funkcii na osnove dvumernogo bystrogo preobrazovanija Fur'e. 21-ja Mezhdunar. konf. «Cifrovaja obrabotka signalov i ee primenenie». M.: IPU RAN. 2019. S. 186–191 (in Russian).
- Shevgunov T.Ja., Gushhina O.A. Ispol'zovanie dvumernogo preobrazovanija Fur'e dlja ocenki spektral'noj korreljacionnoj funkcii.
T-Comm: Telekommunikacii i transport. 2021. T. 15. № 11. S. 54-60. DOI: 10.36724/2072-8735-2021-15-11-54-60 (in Russian). - Efimov E.N., Shevgunov T.Ja. Ocenka ciklostacionarnyh harakteristik sluchajnyh processov s ispol'zovaniem algoritma usrednennyh ciklicheskih periodogramm. 72-ja Mezhdunar. konf. REDS-2017. M.: RNTORJeS im. A.S. Popova. 2017. S. 87-91 (in Russian).
- Sutormin V.V., Shilina E.S. Issledovanie obnaruzhitelej s postojannym urovnem lozhnoj trevogi. Trudy Krylovskogo gos. nauch. centra. 2019. № 2. S. 287-294. DOI: 10.24937/2542-2324-2019-2-S-I-287-294.
- Rohling H. Ordered statistic CFAR technique - an overview. 2011 12th International Radar Symposium (IRS). Germany. Leipzig. 2011. P. 631-638.