350 rub
Journal Radioengineering №1 for 2025 г.
Article in number:
Linearization of a power amplifier with separate by strengthening and regulating the mode according to supply voltage
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202501-01
UDC: 621.396.71
Authors:

A.A. Мaksimov1, S.F. Gorgadze2

1,2 Moscow Technical University of Communications and Informatics (MTUCI) (Moscow, Russia)

1 a.a.maksimov@mtuci.ru; 2 s.f.gorgadze@mtuci.ru

Abstract:

Formulation of the problem. Linearization of the radio frequency path for amplifying signals with amplitude and phase modulation in digital communication channels in order to meet the requirements for the level of out-of-band emissions and increase the speed of information transmission is inevitably accompanied by a decrease in its energy efficiency.

Goal of the work. Consideration of aspects of linearization of power amplifiers with energy-efficient options for their construction in terms of the achievable linearity of amplification of signals with amplitude and phase modulation, based on the electrical equivalent circuit of the active element.

Results of the work. A method has been developed for calculating the operator of inertia-free nonlinear signal transformations with amplitude and phase modulation in a power amplifier based on its electrical equivalent circuit to study a wide range of its operating modes with the absence or presence of separate amplification and regulation by supply voltage under a resonant or broadband load. Amplification options were considered with linear regulation of the power amplifier supply voltage and its operation in boundary and under voltage modes, as well as with separate amplification of the high-frequency component and amplitude envelope of the signal with restoration of the latter in overstressed operating modes, as well as in the key class D mode. It has been established that in the latter case there are easily compensated, but significant amplitude and phase distortions of the signal, but only at a low level of its amplitude, not exceeding (20-25)% of its maximum permissible value, which is specified in article; When the signal amplitude level increases, up to the maximum permissible, nonlinear distortions are practically absent. In the remaining cases considered, in addition to restoring the amplitude envelope of the signal in the overvoltage mode of operation of the power amplifier, it is possible to almost completely compensate for nonlinear distortions of the signal with similar final values of the characteristics of residual nonlinear distortions and with an output useful power of the amplifier of (32-36)% greater than in the case of restoring the signal amplitude based on regulation by the supply voltage in combination with its key operating mode. When regulating the supply voltage in combination with restoring the amplitude envelope of the signal in the amplifier in the overvoltage mode of its operation, it was not possible to compensate for nonlinear distortions of the signal when its amplitude level at the input exceeded approximately 0.8 of the maximum permissible. This problem can be solved by reducing the amplitude of the input signal, as a result of which the output power of the amplifier after linearization decreases by approximately (60-64)% compared to the absence of regulation. Therefore, in this case, it is advisable to use combined amplification using at least two amplification stages in combination with their linearization.

Practical significance. The results of the work can be used in the development of linear energy-efficient radio paths for amplifying complex composite signals with amplitude and phase modulation of digital information transmission channels of promising radio systems.

Pages: 5-23
For citation

Мaksimov A.A., Gorgadze S.F. Linearization of a power amplifier with separate by strengthening and regulating the mode according to supply voltage. Radiotekhnika. 2025. V. 89. № 1. P. 5−23. DOI: https://doi.org/10.18127/j00338486-202501-01 (In Russian)

References
  1. Gorgadze S.F. SVCh-usiliteli moshhnosti dlja mobil'noj svjazi i radiodostupa. Monografija. M.: Gorjachaja linija - Telekom. 2022. 456 s.
  2. Сечи Ф., Буджатти М. Мощные твердотельные СВЧ-усилители. Монография. М.: Техносфера. 2016. 416 s. (in Russian).
  3. Ghannouchi F., Hammi O., Helaoui M. Behavioral modelling and predistortion of wideband wireless transmitters. Monograph. John Wiley & Sons Ltd. 2015. 250 p.
  4. Yu C., Lu Q., Yin H., Cai J. Linear-Decomposition digital predistortion of power amplifiers for 5G ultrabroadband applications. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68, № 7. P. 2833-2844.
  5. Byrne D., Farrell R., Dooley J. Hardware and latency optimization for 5G digital predistortion. 2019 30th Irish Signals and Systems Conference (ISSC). 2019. Р. 1-6.
  6. Gilabert P.L., Braithwaite R.N., Montoro G. Beyond the moore-penrose inverse: strategies for the estimation of digital predistortion linearization parameters. IEEE Microwave Magazine. 2020. V. 21. № 12. P. 34-46.
  7. Petushkov S.V. Adaptivnoe ustrojstvo predyskazhajushheĭ linearizacii dlja bortovyh radioperedajushhih ustrojstv. Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. 2020. T. 12. № 6. S. 11-17 (in Russian).
  8. Maksimov A.A., Komarov I.V., Gorgadze S.F. Modelirovanie kompensacii nelinejnyh iskazhenij v usilitele moshhnosti na osnove ego cifrovoj povedencheskoj modeli. Telekommunikacii i informacionnye tehnologii. 2022. T. 9. № 2. S. 92-99 (in Russian).
  9. Schuartz L., et al. Comparison between direct and indirect learnings for the digital pre-distortion of concurrent dual-band power amplifiers. Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design. São Paulo. Brazil: Association for Computing Machinery (SBCCI’19). 2019.
  10. Gorgadze S.F., Maksimov A.A. Teorija garmonicheskogo balansa dlja shemotehnicheskogo proektirovanija. T-Comm: Telekommu-nikacii i transport. 2020. T. 14. № 11. S. 21-32 (in Russian).
  11. Gorgadze S.F., Piljugin I.S. Samonastraivajushhijsja algoritm linearizacii harakteristiki usilitelja moshhnosti na osnove LUT. REDS: Telekommunikacionnye ustrojstva i sistemy. 2020. T. 10. № 2. S. 34-39 (in Russian)
  12. Gorgadze S.F. Vybor povedencheskoj modeli nelinejnogo tverdotel'nogo usilitelja moshhnosti. Sistemy sinhronizacii, formirovanija
    i obrabotki signalov. 2018. T. 9. № 1. S. 54-58 (in Russian).
  13. Varlamov O.V., Nguen D.K., Grychkin S.E. Kombinirovanie sinteticheskih metodov vysokojeffektivnogo vysokochastotnogo usilenija. T-Comm: Telekommunikacii i transport. 2021. T. 15. № 9. S. 11-16 (in Russian).
  14. Raab F.H. Drive modulation in Kahn-technique transmitters. 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282). Anaheim. CA. USA. 1999. V. 2. Р. 811-814. DOI: 10.1109/MWSYM.1999.779883.
  15. Rautio T., Harju H., Hietakangas S., Rahkonen T. Effects of different VDD-drives in ET & EER transmitters. Norchip 2007. Aalborg. Denmark. 2007. Р. 1-4. DOI: 10.1109/NORCHP.2007.4481031. 
  16. Nguen D.K. Metody snizhenija trebovanij k polose propuskanija antenny dlja peredatchika s razdeleniem sostavljajushhih. Radiotehnika. 2023. T. 87. № 9. S. 96-112. DOI: https://doi.org/10.18127/j00338486-202309-09 (in Russian).
  17. Zhu A., Draxler P., Jonmei J., Brazil T.J. Open-Loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series. IEEE Transactions on Microwave Theory Techniques. 2008. July. V. 56. P. 1524-1534.
  18. Smirnov A.V., Gorgadze S.F. Potencial'nyj KPD usilitelej slozhnyh kompozitnyh signalov. Jelektrosvjaz'. 2016. № 2. S. 68-74 (in
    Russian)
  19. Kokolov A.A., Sheerman F.I., Babak L.I. Obzor matematicheskih modelej SVCh polevyh tranzistorov s vysokoj podvizhnost'ju jelektronov. Doklady TUSURa. 2010. № 2(22). Ch. 1. S. 118-123 (in Russian)
  20. Kobbold R. Teorija i primenenie polevyh tranzistorov. Monografija. Leningrad: Jenergija. 1975. 304 s. (in Russian).
  21. Kaganov V.I. Proektirovanie tranzistornyh radioperedatchikov s primeneniem JeVM. Monografija. M.: Radio i svjaz'. 1988. 256 s. (in Russian).
  22. Gorgadze S.F. Choice of the behavioral model of the non-linear solid-state power amplifier. V sb.: 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO 2018). 2018. S. 8457034.
  23. Gorgadze C.F. Asimmetrichnye modifikacii obobshhennogo bystrogo preobrazovanija Fur'e i Fur'e-Adamara. Radio-tehnika i jelektronika. 2005. T. 50. № 3. S. 302-308 (in Russian).
  24. Gorgadze S.F. Composite spread spectrum signals with uniform amplitude envelope for satellite radionavigation systems. Journal
    of Communications Technology and Electronics. 2017. V. 62. № 47. Р. 346-359.
  25. Брюханов Ю.А., Красавин К.А. Нелинейные искажения сигналов в мощных выходных усилителях. Радиотехника. 2019. Т. 83. № 8. С. 28-37. DOI: 10.18127/j00338486-201908(11)-04 (in Russian).
  26. Brjuhanov Ju.A., Krasavin K.S. Iskazhenija signalov s uglovoj moduljaciej v moshhnyh vyhodnyh usiliteljah. Radiotehnika. 2021. T. 85. № 9. S. 86-94. DOI: https://doi.org/10.18127/j00338486-202109-08 (in Russian).
  27. Doncov D.E., Gorgadze S.F Analiz i sravnenie variantov postroenija usilitelej moshhnosti dlja mobil'nyh setej 5G. Telekommunikacii i informacionnye tehnologii. 2022. T. 9. № 1. S. 83-90 (in Russian).
  28. Komarov I.V., Myl'nikov A.S., Gorgadze S.F. Razrabotka i issledovanie harakteristik tverdotel'nogo usilitelja moshhnosti S-diapazona dlja bortovogo retransljatora. Telekommunikacii i informacionnye tehnologii. 2023. T.10. № 1. S. 80-89 (in Russian)
Date of receipt: 01.07.2024
Approved after review: 04.07.2024
Accepted for publication: 26.12.2024