350 rub
Journal Radioengineering №9 for 2024 г.
Article in number:
Template models of silicon carbide JFETs and their practical applications in high-temperature analog chip design problems in LTspice environment
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202409-17
UDC: 621.375.9
Authors:

V.E. Chumakov1, A.M. Pilipenko2, D.V. Kleimenkin3, V.N. Biryukov4

1,3 Don State Technical University (Rostov-on-Don, Russia)

2,4 Southern Federal University (Taganrog, Russia)

1 chumakov.dssa@mail.ru; 2 pilipenko-am@mail.ru; 3 K-Dima-01@mail.ru; 4 vnbiryukov@yandex.ru

Abstract:

Modern achievements of leading microelectronic firms in the field of designing operational amplifiers (Op-Amp) and their functional units based on silicon carbide, designed for operation in the temperature range up to 300-600 °C, are analyzed. Numerical values of the parameters of existing high-temperature operational amplifiers, created for space missions of NASA Research Center named after Gallen, on the open-circuit voltage gain, the systematic component of the zero offset voltage, the frequency of single gain, the maximum rate of increase of the output voltage, the coefficient of attenuation of input in-phase signals and the coefficient of suppression of interference on the power supply rails, as well as information on the experimental characteristics of Op-Amps during long-term operation at high temperatures and exposure to radiation.

To model circuits at temperatures up to 450 °C, template models of SiC transistors (TM) have been developed using the template modeling technique, in which constant model parameters are replaced by fractional-rational functions (Padé approximation), allowing to describe more accurately the physical processes in JFETs without violating the nature of their changes. For the freely distributable modeling environment LTspice the instruction for application of the TM is developed. Circuit solutions of high-temperature basic analog functional units realized on the basis of silicon carbide field-effect transistors are considered. The basic characteristics of SiC source repeaters, SiC differential stages and the simplest SiC operational amplifiers based on them at temperatures of 25 °C and
452 °C are investigated.  The obtained results are recommended to be used in the design of high-temperature operational and instrumental amplifiers in space instrumentation, deep well drilling, automotive industry, nuclear reactors, etc.

Pages: 178-187
For citation

Chumakov V.E., Pilipenko A.M., Kleimenkin D.V., Biryukov V.N. Template models of carbide-silicon JFETs and their practical ap-plications in the design of high-temperature analog microcircuits in the LTspice environment. Radiotekhnika. 2024. V. 88. № 9.
P. 178−187. DOI: https://doi.org/10.18127/j00338486-202409-17 (In Russian)

References
  1. Lien, Wei-Cheng. Harsh Environment Silicon Carbide UV Sensor and Junction Field-Effect Transistor. 2013. https://escho-larship.org/uc/item/4vp770tp#main.
  2. Vert Alexey Chen, Cheng-Po Paul, A. Saia, Rich Andarawis, Emad Kashyap, Avinash Zhang, Tan Shaddock, David Shen, Zhenzhen Johnson, R. Normann, Randy. Silicon Carbide High Temperature Operational Amplifier. Proceedings - IMAPS International Conference and Exhibition on High Temperature Electronics (HiTEC 2012). 2012. Р. 378-383. 10.4071/HITEC-THP12.
  3. Bhuyan S.A. Design of a High Performance Silicon Carbide CMOS Operational Amplifier, Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2042.
  4. Yang, Jie Fraley, John Western, Bryon Schupbach, Marcelo Lostetter, Alexander. An All Silicon Carbide High Temperature (450+ °C) High Voltage Gain AC Coupled Differential Amplifier. Materials Science Forum. V. 2011. Р. 746-749. DOI: 10.4028/www.scien-tific.net/MSF.679-680.746.
  5. Stum Z. et al. 300 °C silicon carbide integrated circuits. Materials Science Forum. Trans. Tech. Publications Ltd. V. 679. Р. 730-733.
  6. Clark David T., Ramsay Ewan P., Murphy A.E., Smith D.A., Thompson R.F., Young R.A.R., Cormack J. D., Zhu C., Finney S., Fletcher J. High Temperature Silicon Carbide CMOS Integrated Circuits. Materials Science Forum. V. 2011. Р. 726-729. DOI: 10.4028/www.scientific.net/MSF.679-680.726.
  7. Neudeck Philip G, Spry David J, Chen Liang-Yu, Chang Carl W., Beheim Glenn M., Okojie Robert S., Evans Laura J., Meredith Roger D., Ferrier Terry L., Krasowski Michael J., Prokop Norman F. Prolonged 500 C Operation of 6H-SiC JFET Integrated Circuitry. Materials Science Forum. 2009. Р. 929-932. DOI: 10.4028/www.scientific.net/MSF.615-617.929.
  8. Vert, Alexey Andarawis, Emad Chen, Cheng. Reliability of Silicon Carbide Integrated Circuits at 300 °C. Materials Science Forum. 2012. Р. 1265-1268. DOI: 10.4028/www.scientific.net/MSF.717-720.1265.
  9. Kashyap S., Chen C.P., Tilak V. Compact modeling of silicon carbide lateral MOSFETs for extreme environment integrated circuits. 2011 International Semiconductor Device Research Symposium (ISDRS). College Park. MD. USA. 2011. Р. 1-2. DOI: 10.1109/ISDRS.2011.6135185.
  10. Girardi M.A., Peterson K.A., Vianco P.T. Thick Film Process Characterization for Thin Film Metallized LTCC. Journal of Microelectronics and Electronic Packaging. 2016. Р. 136–142. https://doi.org/10.4071/imaps.512.
  11. Patil A.C. et al. Fully-monolithic, 600 C differential amplifiers in 6H-SiC JFET IC technology. IEEE Custom Integrated Circuits Conference. IEEE. 2009. Р. 73-76.
  12. Hedayati R., Lanni L., Rodriguez S., Malm B.G., Rusu A., Zetterling C.M. A Monolithic, 500 °C Operational Amplifier in 4H-SiC Bipolar Technology. IEEE Electron Device Letters. July 2014. V. 35. № 7. Р. 693-695. DOI: 10.1109/LED.2014.2322335.
  13. Patil, Amita. Silicon Carbide JFET Integrated Circuit Technology for High-Temperature Sensors. Thesis for PhD. 2009.
  14. Lauenstein J.M. et al. Room Temperature Radiation Testing of a 500 °C Durable 4H-SiC JFET Integrated Circuit Technology. 2019 IEEE Radiation Effects Data Workshop. San Antonio. TX. USA. 2019. Р. 1-7. DOI: 10.1109/REDW.2019.8906528.
  15. Patil A.C., Fu X., Anupongongarch C., Mehregany M., Garverick S.L. 6H-SiC JFETs for 450 °C Differential Sensing Applications. Journal of Microelectromechanical Systems. Aug. 2009. V. 18. № 4. Р. 950-961. DOI: 10.1109/JMEMS.2009.2021831.
  16. Mudholkar M. Characterization and Modeling of 4H-SiC Low Voltage MOSFETs and Power MOSFETs. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/268.
  17. Bergmann J., ten Have A. High temperature operational amplifier with low offset voltage. Proceedings of ISSE'95 - International Symposium on Signals, Systems and Electronics. San Francisco. CA. USA. 1995. Р. 451-454. DOI: 10.1109/ISSSE.1995.498029.
  18. Habib H., Wright N.G., Horsfall A.B. Complementary JFET Logic for Low-Power Applications in Extreme Environments. Materials Science Forum. 2013. V. 740-742. Р. 1052-1055. DOI: 10.4028/www.scientific.net/MSF.740-742.1052.
  19. Allen S.T., Palmour J.W., Alcorn T.S. Silicon carbide metal-semiconductor field effect transistors. Patent US 6.686.616. Feb.3, 2004.
  20. Tomana M., Johnson R.W., Jaeger R.C., Dillard W.C. A hybrid silicon carbide differential amplifier for 350 degrees C operation. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. Aug. 1993. V. 16. № 5. Р. 536-542. DOI: 10.1109/33.239885.
  21. Jouha W., Oualkadi A.E., Dherbécourt P., Joubert E., Masmoudi M. Silicon Carbide Power MOSFET Model: An Accurate Parameter Extraction Method Based on the Levenberg–Marquardt Algorithm. IEEE Transactions on Power Electronics. Nov. 2018. V. 33. № 11. Р. 9130-9133. DOI: 10.1109/TPEL.2018.2822939.
  22. Biryukov V.N., Pilipenko A.M., Prokopenko N.N., Dvornikov O.V. Template model of complementary field-effect transistors with a control p-n-junction. J. Radio Electronics. 2019. № 8. Р. 10. DOI: 10.30898/1684-1719.2019.8.5.
Date of receipt: 01.07.2024
Approved after review: 04.07.2024
Accepted for publication: 08.07.2024