A.N. Dementev1, D.S. Klyuev2, E.E. Krivobokov3, Yu.V. Sokolova4
1 MIREA - Russian Technological University (Moscow, Russia)
2,4 Povolzhskiy State University of Telecommunications and Informatics (Samara, Russia)
3 Central Research Institute for Machine Building (Moscow Region, Korolev, Russia)
1 dementev@mirea.ru; 2 klyuevd@yandex.ru; 3 rv-evgeny@ya.ru; 4 sokolova-yu-v@yandex.ru
Problem statement. Conformal antennas are antennas that completely or partially follow the shape of the object on which they are installed. The main applications of such antennas are in aviation, rocketry and vehicles. Despite a significant number of publications on the topic of conformal antennas both in our country and abroad, issues relating to the formation of the radiation characteristics of conformal microstrip antennas, as well as the influence of the size and shape of the radiator and substrate on these characteristics, remain poorly understood.
Goal. Development of a methodology for calculating the input resistance of a conformal cylindrical microstrip dipole radiator.
Results. The problem of current density distribution on the surface of a conformal cylindrical microstrip dipole radiator is reduced to a one-dimensional integral equation (IE). In the core of the resulting IS, the Cauchy-type singularity was explicitly identified and it was shown that this IS is singular. A method for solving it is proposed. A method for calculating the input resistance of a conformal cylindrical microstrip dipole radiator, based on solving the resulting singular integral equation, is described. The dependences of the active and reactive components of the input resistance on the length of the radiator normalized to the wavelength are given.
Practical significance. The proposed method for calculating the input resistance of a conformal cylindrical microstrip dipole radiator allows you to effectively calculate the input resistance and analyze the influence of the geometric dimensions of the radiator, as well as the dimensions and electrodynamic properties of the substrate. This technique can be adapted for radiators placed on substrates made of various materials, including chiral metamaterials.
Dementev A.N., Klyuev D.S., Krivobokov E.E., Sokolova Yu.V. Conformal cylindrical microstrip dipole radiator input impedance calculation. Radiotekhnika. 2024. V. 88. № 9. P. 168−177. DOI: https://doi.org/10.18127/j00338486-202409-16 (In Russian)
- Mona Boada D.F., Nascimento D.C. Including the Effects of Curvature in the Cavity Model and New Manufacturing Considerations for Cylindrical Microstrip Antennas. IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 12. P. 2419–2423. https://doi.org/10.1109/LAWP.2018.2877037.
- Lech R., Marynowski W., Kusiek A., Mazur J. An Analysis of Probe-Fed Rectangular Patch Antennas with Multilayer and Multipatch Configurations on Cylindrical Surfaces. IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 6. P. 2935–2945. https://doi.org/10.1109/TAP.2014.2313137.
- Mona Boada D.F., Nascimento D.C. Synthesis of Circularly Polarized Cylindrical Microstrip Antennas. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 11. P. 10123–10131. https://doi.org/10.1109/TAP.2022.3188341.
- Heckler M.V.T., Dreher A. Analysis of Conformal Microstrip Antennas with the Discrete Mode Matching Method. IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 3. P. 784–792. https://doi.org/10.1109/TAP.2010.2103014.
- Svezhentsev A.Ye., Soh P.J., Yan S., Vandenbosch G.A.E. Green’s Functions for Probe-Fed Arbitrary-Shaped Cylindrical Microstrip Antennas. IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 3. P. 993–1003. https://doi.org/10.1109/TAP.2015.2389794.
- Lech R. Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique. IEEE Transactions on Antennas and Propagation. 2018. V. 66. № 1. P. 497–500. https://doi.org/10.1109/TAP.2017.2768578.
- Pradhan S., Gupta B. High-Gain Dual-Mode Cylindrical Rectangular Patch Antenna for Airborne Applications. IEEE Transactions on Aerospace and Electronic Systems. 2022. V. 58. № 5. P. 4168–4179. https://doi.org/10.1109/TAES.2022.3161611.
- Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka. 1979. 288 s. (In Russian).
- Buzov A.L., Kljuev D.S., Kurushkin M.S., Neshheret A.M., Usatenko T.O., Kabanov V.A. Metody reshenija nekorrektnyh zadach jelektrodinamicheskogo analiza izluchajushhih struktur na osnove kiral'nyh metamaterialov. Fizika volnovyh processov i radiotehnicheskie sistemy. 2019. T. 22. № 4-1. S. 7-19. https://doi.org/10.18469/1810-3189.2019.22.4.7-19 (In Russian).
- Kljuev D.S., Krivobokov E.Je., Neshheret A.M., Sushko I.V., Hazhinov V.V. Integral'nye predstavlenija polej izluchenija konformnyh cilindricheskih mikropoloskovyh izluchatelej. Radiotehnika. 2023. T. 87. № 6. S. 115-123. https://doi.org/10.18127/j00338486-202306-15 (In Russian).
- Panchenko B.A., Knjazev S.T., Nechaev Ju.B., Nikolaev V.I., Shabunin S.N. Jelektrodinamicheskij raschjot harakteristik poloskovyh antenn. M.: Radio i svjaz'. 2002. 256 s. (In Russian).
- Dement'ev A.N., Kljuev D.S., Neganov V.A., Sokolova Ju.V. Singuljarnye i gipersinguljarnye integral'nye uravnenija v teorii zerkal'nyh i poloskovyh antenn. M.: Radiotehnika. 2015. 216 s. (In Russian).
- Mushelishvili N.I. Singuljarnye integral'nye uravnenija. M.: Nauka. 1986. 512 s. (In Russian).
- Gahov F.D. Kraevye zadachi. M.: Nauka, 1977. 640 s. (In Russian).
- Buzov A.L., Buzova M.A., Klyuev D.S., Neshcheret A.M., Sokolova Yu.V. Mathematical model of conformal radiating structures with chiral filling based on spiral elements taking into account the macroscopic parameters frequency dispersion. Lobachevskii Journal of Mathematics. 2023. V. 44. № 9. P. 4009–4015. https://doi.org/10.1134/S1995080223090068.
- Buchnev I.Ju., Kljuev D.S., Mamoshina Ju.S., Osipov O.V., Panin D.N. Razrabotka matematicheskoj modeli kiral'nogo metamateriala na osnove cilindricheskih spiral'nyh jelementov s uchetom dispersii i koncentracii. Fizika volno-vyh processov i radiotehnicheskie sistemy. 2023. T. 26. № 2. S. 36–47. https://doi.org/10.18469/1810-3189.2023.26.2.36-47 (In Russian).