A.N. Dementev1, D.S. Klyuev2, E.E. Krivobokov3, Yu.V. Sokolova4
1 MIREA - Russian Technological University (Moscow, Russia)
2,4 Povolzhskiy State University of Telecommunications and Informatics (Samara, Russia)
3 Central Research Institute for Machine Building (Moscow Region, Korolev, Russia)
1 dementev@mirea.ru; 2 klyuevd@yandex.ru; 3 rv-evgeny@ya.ru; 4 sokolova-yu-v@yandex.ru
Problem statement. Antennas that fully or partially repeat the shape of the object on which they are placed are called conformal. The main areas of application of conformal antennas are aviation, rocketry, and vehicles. Despite the presence of a large number of publications devoted to conformal antennas in our country and abroad, issues related to the formation of the radiation characteristics of conformal microstrip antennas, as well as the influence of the overall dimensions and geometry of the emitter on the radiation characteristics, have still not been sufficiently studied.
Goal. The purpose of this work was to obtain an approximate formula for calculating the input impedance of a conformal cylindrical microstrip loop radiator.
Results. In this article, an integral equation is obtained for the unknown current density distribution function on the surface of a conformal cylindrical microstrip loop radiator; as a result of its solution, an approximate formula for this function is obtained. An approximate formula for calculating the input impedance is obtained. The dependences of the input impedance of a conformal cylindrical microstrip loop radiator on its length normalized to the wavelength are calculated.
Practical significance. The proposed method for calculating the input impedance of a conformal cylindrical microstrip loop radiator makes it possible to effectively calculate and study the dependence of the input impedance on the geometric dimensions of the emitter, as well as the dimensions and electrodynamic parameters of the substrate. This technique can be generalized to emitters located on substrates made of other materials, for example, chiral metamaterials.
Dementev A.N., Klyuev D.S., Krivobokov E.E., Sokolova Yu.V. Conformal cylindrical microstrip loop radiator input impedance calculation. Radiotekhnika. 2024. V. 88. № 9. P. 159−167. DOI: https://doi.org/10.18127/j00338486-202409-15 (In Russian)
- Pant R., Kala P., Pattnaik S.S., Saraswat R.C. Short-circuited quarter wavelength cylindrical-rectangular microstrip patch antenna. International journal of microwave and optical technology. 2008. V. 3. № 2. P. 110–118.
- Elrashidi A., Elleithy K., Bajwa H. Input impedance, VSWR and return loss of a conformal microstrip printed antenna for TM01 mode using two different substrates. International Journal of Networks and Communications. 2012. V. 2. № 2. P. 13–19. https://doi.org/10.5923/j.ijnc.20120202.03.
- Habashy T.M., Ali S.M., Kong J.A. Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas. IEEE Transactions on Antennas and Propagation. 1990. V. 38. № 5. P. 722–731. https://doi.org/10.1109/8.53500
- Dajlis S., Shabunin S. Funkcii Grina mnogoslojnyh cilindricheskih struktur v zadachah izluchenija, rasprostranenija i difrakcii jelektromagnitnyh voln. Ural Radio Engineering Journal. 2017. Т. 1. № 1. S. 91–119. https://doi.org/10.15826/urej.2017.1.1.005.
- Li L.-W., Zhao T.-X., Leong M.-S., Yeo T.-S. A Spatial-domain method of moments analysis of a cylindrical-rectangular chirostrip. Progress in Electromagnetics Research. 2002. V. 35. P. 165–182. https://doi.org/10.2528/PIER01060503.
- Svezhentsev A.Y., Kryzhanovskiy V.V. Patch shape influence upon radar cross section of a cylindrical microstrip antenna. Progress in Electromagnetics Research B. 2009. V. 15. P. 307–324. https://doi.org/10.2528/PIERB09050602.
- Panchenko B.A., Knjazev S.T., Nechaev Ju.B., Nikolaev V.I., Shabunin S.N. Jelektrodinamicheskij raschet harakteristik poloskovyh antenn. M.: Radio i svjaz'. 2002. 256 s. (In Russian).
- Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka. 1979. 288 s. (In Russian).
- Dement'ev A.N., Kljuev D.S., Neganov V.A., Sokolova Ju.V. Singuljarnye i gipersinguljarnye integral'nye uravnenija v teorii zerkal'nyh i poloskovyh antenn. M.: Radiotehnika. 2015. 216 s. (In Russian).
- Buzov A.L., Kljuev D.S., Kurushkin M.S., Neshheret A.M., Usatenko T.O., Kabanov V.A. Metody reshenija nekorrektnyh zadach jelektrodinamicheskogo analiza izluchajushhih struktur na osnove kiral'nyh metamaterialov. Fizika volnovyh processov i radiotehnicheskie sistemy. 2019. T. 22. № 4-1. S. 7-19. https://doi.org/10.18469/1810-3189.2019.22.4.7-19 (In Russian).
- Kljuev D.S., Krivobokov E.Je., Neshheret A.M., Sushko I.V., Hazhinov V.V. Integral'nye predstavlenija polej izluchenija konformnyh cilindricheskih mikropoloskovyh izluchatelej. Radiotehnika. 2023. T. 87. № 6. S. 115-123. https://doi.org/10.18127/j00338486-202306-15 (In Russian).
- Buzov A.L., Buzova M.A., Klyuev D.S., Neshcheret A.M., Sokolova Yu.V. Mathematical model of conformal radiating structures with chiral filling based on spiral elements taking into account the macroscopic parameters frequency dispersion. Lobachevskii Journal of Mathematics. 2023. V. 44. № 9. P. 4009–4015. https://doi.org/10.1134/S1995080223090068.
- Buchnev I.Ju., Kljuev D.S., Mamoshina Ju.S., Osipov O.V., Panin D.N. Razrabotka matematicheskoj modeli kiral'nogo metamateriala na osnove cilindricheskih spiral'nyh jelementov s uchetom dispersii i koncentracii. Fizika volnovyh processov i radiotehnicheskie sistemy. 2023. T. 26. № 2. S. 36–47. https://doi.org/10.18469/1810-3189.2023.26.2.36-47 (In Russian).