O.V. Osipov1, D.N. Panin2
1,2 Povolzhskiy State University of Telecommunications and Informatics (Samara, Russia)
1 o.osipov@psuti.ru; 2 d.panin@psuti.ru
Currently, metamaterials are actively used in the creation of microwave and optic devices for various purposes. This is due to their non-traditional properties, compared to dielectric, conductive and other materials. One type of metamaterial is chiral media, which contain conductive microelements of mirror asymmetric shape. Such metamaterials have dispersion and, as a consequence, it is necessary to take it into account when developing various microwave structures. The work demonstrates taking into account the dispersion of the dielectric constant and the chirality parameter for calculating waveguide and reflecting structures with homogeneous and inhomogeneous chiral layers. The work carried out an electrodynamic analysis of the reflective properties of an inhomogeneous chiral layer and a rectangular waveguide, with a homogeneous layer of chiral metamaterial located in the transverse plane.
The work has developed a method for calculating the reflection and transmission coefficients of an optical wave from the inhomogeneous chiral structure under consideration, which is based on the use of the differential sweep method. When constructing a mathematical model, we took into account the cross-polarization of the optical wave field, which consists in the appearance of orthogonal components during the interaction of the field with a chiral metamaterial. The solution to the problem was reduced to a matrix differential equation for the unknown reflection coefficients of the main and cross-polarized components of the optical field. The work examined chiral metamaterials with linear and parabolic inhomogeneity profiles.
The results of the work can be applied in the design of new microwave and optics devices with layers of metamaterial, which can expand their functionality.
Osipov O.V., Panin D.N. Using the dispersion model of a chiral metamaterial to calculate the characteristics of homogeneous and heterogeneous reflective and waveguide structures. Radiotekhnika. 2024. V. 88. № 9. P. 150−158. DOI: https://doi.org/10.18127/j00338486-202409-14 (In Russian)
- Vendik I.B., Vendik O.G. Metamaterialy i ih primenenie v tehnike sverhvysokih chastot (Obzor). Zhurnal tehnicheskoj fiziki. 2013. T. 83. №. 1. S. 3-28 (In Russian).
- Kumar S.N. et al. A Review on Metamaterials for Device Applications. Crystals. 2021. № 11. P. 518.
- Capolino F. Theory and Phenomena of Metamaterials. Boca Raton: Taylor & Francis – CRC Press. 2009. 992 p.
- Iyer A. K., Alù A., Epstein A. Metamaterials and Metasurfaces - Historical Context, Recent Advances, and Future Directions. IEEE Transactions on Antennas and Propagation. 2020. V. 68. №3. P. 1223-1231.
- Caloz C., Sihvola A. Electromagnetic Chirality. Part 1: The Microscopic Perspective [Electromagnetic Perspectives]. IEEE Antennas and Propagation Magazine. 2020. V. 62. № 1. P. 58-71.
- Lindell I.V., Sihvola A.H., Tretyakov S.A., Viitanen A.J. Electromagnetic waves in chiral and bi-isotropic media. London: Artech House. 1994. 291 p.
- Lakhtakia A., Varadan, V.K., Varadan V.V. Time-harmonic electromagnetic fields in chiral media. Lecture Notes in Physics. Berlin: Heidelberg and Boston: Springer-Verlag. 1989. 121 p.
- Lakhtakia A., Varadan V.V., Varadan V.K. Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media. JOSA A. 1988. V. 5. №. 2. С. 175-184.
- Zhao R., Koschny T., Soukoulis C.M. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Optics express. 2010. V. 18. №. 14. Р. 14553-14567.
- Sihvola A.H. Temporal dispersion in chiral composite materials: A theoretical study. Journal of electromagnetic waves and applications. 1992. V. 6. №. 7. P. 1177-1196.
- Silverman M.P. Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation. J. Opt. Soc. Am. 1986. A 3830-7.
- Bassiri S., Papas C.H., Engheta N. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab.
J. Opt. Soc. Am. 1988. A51450–9. - Aralkin M.V., Dement'ev A.N., Osipov O.V. Issledovanie jelektromagnitnyh harakteristik planarnyh kiral'nyh metastruktur na osnove sostavnyh spiral'nyh komponentov s uchetom geterogennoj modeli Bruggemana. Fizika volnovyh processov i radiotehnicheskie sistemy. 2020. T. 23. № 3. S. 44-55 (In Russian).
- Neganov V.A., Osipov O.V. Otrazhajushhie, volnovedushhie i izluchajushhie struktury s kiral'nymi jelementami. 2006. 279 s. (In Russian).
- Osipov O.V., Panin D.N. Issledovanie otrazhenija i prohozhdenija volny cherez planarnyj sloj kiral'nogo metamateriala, raspolozhennogo v prjamougol'nom volnovode s uchetom material'noj dispersii. Zhurnal radiojelektroniki. 2024. № 4 (In Russian).
- Buzov A.L. i dr. Perspektivy ispol'zovanija metamaterialov v antennah novogo pokolenija. Fizika volnovyh processov i radiotehnicheskie sistemy. 2017. № 3. S. 15-20 (In Russian).
- Sljusar V.I. Metamaterialy v antennoj tehnike: istorija i osnovnye principy. Jelektronika: NTB. 2009. № 7. S. 10-19 (In Russian).
- Stacenko L.G. i dr. Primenenie metamaterialov v antennyh ustrojstvah cifrovyh sistem svjazi. Zhurnal radiojelektroniki. 2024. № 1 (In Russian).