350 rub
Journal Radioengineering №9 for 2024 г.
Article in number:
Optimal filtering of an information process depended on noninformative parameters described by Marcovian chain when radio signals are receiving
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202409-04
UDC: 629.058
Authors:

A.I. Perov1

1 National Research University «MPEI» (Moscow, Russia)

1 alexp@aha.ru

 

Abstract:

In radio navigation and radio location tasks tracking systems on radio signals parameters often operate when object acceleration has stepwise changing. If we synthesize various tracking systems using optimal filtering theory it is necessary to represent the estimated process as a multidimensional Marcovian process. But such representation for stepwise changed acceleration is a rough approximation that lead to estimates accuracy degradation. One of possible approach to such disambiguation is to describe acceleration as Marcovian chain with finite number of states. This approach is developed in the article.

Objective. To synthesize an optimal filtering algorithm of information process depended on noninformative parameters described
by Marcovian chain using the observation grouping method when receiving radio signals and to implement simulation for an illustrative task.

Pages: 43-57
For citation

Perov A.I. Optimal filtering of an information process depended on noninformative parameters described by Marcovian chain when radio signals are receiving. Radiotekhnika. 2024. V. 88. № 9. P. 43−57. DOI: https://doi.org/10.18127/j00338486-202409-04 (In Russian)

References
  1. Tihonov V.I.  Optimal'nyj priem signalov. M.: Radio i svjaz'. 1983 (in Russian).
  2. Perov A.I. Statisticheskaja teorija radiotehnicheskih sistem: Ucheb. posobie. Izd-e 2-e, pererab. i dop. M.: Radiotehnika 2022 (in
    Russian).
  3. Antipov V.N, Perov A.I. i dr. Ocenivanie dal'nosti i skorosti v radiolokacionnyh sistemah. Pod red. A.I. Kanashhenkova i V.I. Merkulova. T. 1, 2. M.: Radiotehnika. 2004 (in Russian).
  4. GLONASS. Modernizacija i perspektivy razvitija. Pod red. A.I. Perova. M.: Radiotehnika. 2020 (in Russian).
  5. Blackman S., Popoli R. Design and Analysis of Modern Tracking Systems. Artech House. Boston. London. 1999.
  6. Kuz'min S.Z. Osnovy proektirovanija sistem cifrovoj obrabotki radiolokacionnoj informacii. M.: Radio i svjaz'. 1986 (in Russian).
  7. Lainiotis D.G. Partitioning: A Unifying Framework for Adaptive Systems. I: Estimation. Proc. IEEE. 1976. V. 30. № 4.
  8. Li X.-R., Jilkov V.P. Survey of Maneuvering Target Tracking. Part V. Multiple-Model Methods. IEEE Transactions on Aerospace and Electronic Systems. 2005. V. 41. № 4. Р. 1255–1321.
  9. Sebastian Dingler1. State estimation with the Interacting Multiple Model (IMM) method. Computer Science July 2022.
  10. Cherkasova A.A., Shatilova A.Ju. Algoritm slezhenija za fazoj navigacionnogo signala pri menjajushhihsja parametrah moshhnosti i dinamiki izmenenija fazy signala. Radiotehnika. 2024. Т. 88. № 9. S. 1-35. DOI: https://doi.org/10.18127/j00338486-202409-0 (in Russian).

 

Date of receipt: 29.07.2024
Approved after review: 05.08.2024
Accepted for publication: 30.08.2024