350 rub
Journal Radioengineering №9 for 2024 г.
Article in number:
Adaptive phase lock loop system for global navigation satellite systems signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202409-02
UDC: 539.163
Authors:

A.A. Cherkasova1, A.Yu. Shatilov2

1,2 National Research University «MPEI» (Moscow, Russia)

1 PotrikeevaAA@mpei.ru; 2 ShatilovAY@mpei.ru

Abstract:

Formulation of the problem. Classical optimal Bayesian phase lock loop (PLL) algorithms require a priori knowledge of the phase dynamics parameters and signal-to-noiz ratios of the received signals. In practice, these parameters vary significantly and, as a rule, are unknown. Taking into account the fact that the operation of such algorithms under conditions different from those a priori specified is not reliable according to the criterion of minimum variance error.

Purpose of the study. Develop a phase-locked loop system for the Global Navigation Satellite System (GNSS) signal that adapts to phase dynamics and signal-to-noise ratio to maintain phase tracking over the widest possible range of operating conditions.

Results. A multi-channel adaptive phase-locked loop system (MAPLL system) has been developed.

Practical significance. The developed system is capable of processing a jump in the signal-to-noise ratio from 50 to 9 dBHz and back without losing phase tracking (under conditions of low dynamics), maintaining phase tracking during abrupt transitions of dynamics between low (due only to the dynamics of the reference oscillator) and high (sinusoidal acceleration 10g and sinusoidal jerk 10 g/s) at a signal-to-noise ratio of 24 dBHz. Thus, in real-world conditions where object dynamics and S/N ratios of received signals change in unpredictable ways, MAPLL system maintains phase tracking over a much wider range of conditions than non-adaptive PLL.

Pages: 21-35
For citation

Cherkasova A.A., Shatilov A.Yu. Adaptive phase lock loop system for global navigation satellite systems signals. Radiotekhnika. 2024. V. 88. № 9. P. 21−35. DOI: https://doi.org/10.18127/j00338486-202409-02 (In Russian)

References
  1. Perov A.I. Statisticheskaja teorija radiotehnicheskih sistem. Ucheb. posobie. Izd. 2-e, pererab. i dop. M.: Radiotehnika. 2022. 840 s. (in Russian).
  2. Cherkasova A.A., Shatilov A.Ju. Adaptivnaja sistema slezhenija za fazoj signala (podrobnyj vyvod i rezul'taty modelirovanija) [Jelektronnyj resurs].URL: https://srns.ru/images/5/56/Cherkasova_Shatilov_Adaptivnaja_SSF_Radiotehnika4_podrobno_.pdf (data ob-rashhenija 06.05.2024) (in Russian).
  3. Perov A.I., Zamolodchikov V.N., Chilikin V.M. Radioavtomatika: Ucheb. dlja vuzov. M.: Radiotehnika. 2014. 320 s. (in Russian).
  4. Understanding GPS: Principles and Applications. Ed. by E.D. Kaplan. Artech House, Inc. Norwoodju Massachusetts. 1996. S. 86-92 (in Russian).
  5. Shatilov A.Ju. Ispol'zovanie kriterija sryva slezhenija pri ocenke pomehoustojchivosti sledjashhih sistem. Radiotehnika. 2010. T. 74. № 11. S. 25-33 (in Russian).
  6. Shatilov A.Ju. Issledovanie kratkovremennyh nestabil'nostej kvarcevyh opornyh generatorov dlja primenenija v NAP. Radiotehnika. 2013. T. 77. № 3. S. 86-92 (in Russian).
  7. Jong-Hoon Won, Bernd Eissfeller. A Tuning method based on signal-to-noise power ratio for adaptive PLL and its relationship with equivalent noise bandwidth. IEEE Communications Letters. February 2013. V. 17. № 2. Р. 393-396.
  8. Jong-Hoon Won. A novel adaptive digital phase-lock-loop for modern digital GNSS receivers. IEEE Communications Letters. January 2014. V. 18. № 1. Р. 46-49.
  9. Dah-Jing Jwo, Sheng-Hung Wang. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sensors Journal. May 2007. V. 7. № 5. Р. 778-789.
  10. Jordi Vilà-Valls, Pau Closas, Carles Fernández-Prades, Jose A. López-Salcedo, Gonzalo Seco-Granados. Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation: Estimation vs. Mitigation. IEEE Communications letters. June 2015. V. 19. № 6. Р. 961-964.
  11. Emanuela Falletti, Marco Pini, Letizia Lo Presti. Low complexity carrier-to-noise ratio estimators for GNSS digital receivers. IEEE Transactions on aerospace and electronic systems. January 2011. V. 47. № 1. Р. 420-437.
Date of receipt: 29.07.2024
Approved after review: 05.08.2024
Accepted for publication: 30.08.2024