350 rub
Journal Radioengineering №8 for 2024 г.
Article in number:
Synthesis of intelligent algorithms for processing information from inertial sensors in conditions of degradation of the measuring channel
Type of article: scientific article
DOI: 10.18127/j00338486-202408-14
UDC: 62-50
Authors:

D.S. Andrashitov1, A.A. Kostoglotov2, A.S. Penkov3, S.V. Lazarenko4

1 The Military Academy of Strategic Rocket Troops after Peter the Great (Balashikha, Russia)

2−4 Don Engineering Center of Don State Technical University (Rostov-on-Don, Russia)

1 dima-andrahitov@rambler.ru; 2 kostoglotov@icloud.com; 3 pencha@mail.ru; 4 lazarenkosv@icloud.com

Abstract:

Problem statement. Measuring channels provide information in automatic control, monitoring and diagnostic systems and can be subject to accidental and targeted external influences that can significantly distort sensor readings, and in some cases completely disable them, which leads to degradation of the measuring channel. A promising way to ensure trouble-free operation of the control system in conditions of degradation of the measuring channel is the use of data processing algorithms that allow for emergency operation using sensor information, the operability of which remains intact. The quality of functioning of a complex multicommunicated control system of an unmanned aerial vehicle significantly depends on the accuracy of measurement data from on-board inertial sensors (accelerometer and gyroscope), one of which may fail during the flight task. In case of an emergency, an adaptive Kalman filter can be used, for which it is necessary to determine its parameters.

Goal. To increase the accuracy of processing the angular orientation data of unmanned aerial vehicles obtained from inertial sensors in conditions of degradation of the measuring channel.

Results. An intelligent algorithm for processing inertial sensor data under conditions of degradation of the measuring channel using a neural network identifier has been synthesized, taking into account parameters related to the dynamic characteristics of unmanned aerial vehicles and the mode of movement in the structure of transition matrices. It is determined that the adaptation of the parameters of the UAV model can be successfully implemented on the basis of artificial neural networks of a relatively simple structure with training based on experimental results and numerical modeling of the UAV angular orientation assessment process.

Practical significance. The obtained results provide an increase in the accuracy of determining the angular orientation of an unmanned aerial vehicle in conditions of degradation of the measuring channel, thereby reducing the likelihood of loss of its stability during the flight task in the event of an emergency situation caused by a gyroscope failure.

Pages: 146-155
For citation

Andrashitov D.S., Kostoglotov A.A., Penkov A.S., Lazarenko S.V. Synthesis of intelligent algorithms for processing information from inertial sensors in conditions of degradation of the measuring channel. Radiotekhnika. 2024. V. 88. № 9. P. 146−155. DOI: https://doi.org/10.18127/j00338486-202408-14 (In Russian)

References
  1. Ishkov A.S., Solodimova G.A., Kuchkovskaja N.A. Upravlenie nadezhnost'ju i kachestvom datchikov kak izdelij otvetstvennogo naznachenija. Nadezhnost' i kachestvo slozhnyh sistem. 2018. № 2(22). S. 18–25 (in Russian).
  2. Mikrin E.A., Kul'ba V.V., Somov S.K. Sintez optimal'nyh raspredelennyh modul'nyh sistem obrabotki dannyh real'nogo vremeni. M.: Institut problem upravlenija im. V.A. Trapeznikova RAN. 2012. 161 s. (in Russian).
  3. Mariam M., Pohvashhev V.N., Rjazancev L.B. K voprosu povyshenija jeffektivnosti protivodejstvija malorazmernym bespilotnym letatel'nym apparatam. Voennaja mysl'. 2022. № 6. S. 45–52 (in Russian).
  4. Matveev V.V., Raspopov V.Ja. Osnovy postroenija besplatformennyh inercial'nyh navigacionnyh sistem. SPb: OAO «Koncern «CNII «Jelektropribor». 2009. 280 s. (in Russian).
  5. Kuzovkov N.T., Salychev O.S. Inercial'naja navigacija i optimal'naja fil'tracija. M.: Mashinostroenie. 1982. 216 s. (in Russian).
  6. Kostoglotov A.A. Cifrovaja intellektual'naja izmeritel'naja procedura. Izmeritel'naja tehnika. 2002. № 7. S. 16–21 (in Russian).
  7. Kostoglotov A.A., Pen'kov A.S., Zehcer V.O. Sintez adaptivnyh algoritmov ocenki orientacii bespilotnyh transportnyh sredstv s ispol'zovaniem intellektual'nogo nejrosetevogo identifikatora. Vestnik Rostovskogo gos. un-ta putej soobshhenija. 2022. № 1(85).
    S. 186–194 (in Russian).
  8. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Strukturno-parametricheskij sintez fil'tra soprovozhdenija na baze dekompozicii po celevomu funkcionalu s adaptaciej k vozmushhenijam traektorii. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2021. T. 19. № 2. S. 14–25. DOI: https://doi.org/10.18127/j20700814-202102-02 (in Russian).
  9. Pen'kov A.S., Kostoglotov A.A., Mamaj V.I. Analiz funkcionirovanija fil'tra Kalmana pri ocenke uglovogo polozhenija ob’ekta. Sb. nauch. trudov «Transport: nauka, obrazovanie, proizvodstvo». Rostov-na-Donu: Rostovskij gos. un-t putej soobshhenija. 2019. T. 1. S. 200–204 (in Russian).
  10. Vavilova N.B., Sazonov I.Ju. Kalibrovka beskardannoj inercial'noj navigacionnoj sistemy v sbore na grubyh stendah s odnoj stepen'ju svobody. Vestnik Moskovskogo universiteta. Serija 1. Matematika. Mehanika. 2012. № 4. S. 64–66 (in Russian).
  11. Krylov A.A., Kornijuk D.V. Tehnologicheskie podhody k ustraneniju smeshhenija nulja MJeMS giroskopov v sostave giroinercial'nogo bloka. Trudy MAI. 2018. № 103. S. 18 (in Russian).
  12. Vtorushin S.E., Arshinova A.A., Nesterenko T.G. Temperaturnyj drejf sobstvennyh chastot mikromehanicheskogo giroskopa. Vestnik nauki Sibiri. 2014. № 1(11). S. 61–65 (in Russian).
Date of receipt: 01.07.2024
Approved after review: 11.07.2024
Accepted for publication: 30.07.2024