350 rub
Journal Radioengineering №8 for 2024 г.
Article in number:
Route models in specialized computer networks
Type of article: scientific article
DOI: 10.18127/j00338486-202408-12
UDC: 004.021
Authors:

A.A. Karandashev1, V.L. Olenev2

1,2 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 aleksandr.karandashev@guap.ru; 2 Valentin.Olenev@guap.ru

Abstract:

Introduction: The development of modern specialized computer networks is a sought-after task. Particular attention is drawn to networks that implement wormhole switching technology, which allows increasing data transfer speeds and reducing the cost of network equipment. The design of such networks requires specialized software that would automate some design processes and avoid possible errors. In particular, an urgent task in such software is the automation of the stages of constructing data transmission routes for information flows.

Purpose: Development of models of data transmission routes for special computer networks of the type (m´n)-lattice and (m´n)-grid.

Results: The features of networks of the form (m´n)-lattice and (m´n)-grid are described. Models of computer networks of the form (m´n)-lattice and (m´n)-grid were constructed. A recurrent formula for constructing routes has been developed, and a routing algorithm has been presented. The application of the proposed models and the procedure for describing routes have been tested on computer networks of the form (1´2)-lattice and (7´5)-grid. A step-by-step algorithm for analyzing the described routes has been generated. An analysis of the described routes was carried out, as a result of which problematic routes with various types of blockages were discovered. The problem of finding the optimal route is formulated. To formulate the optimization problem, a characteristic parameter in the form of route length is proposed, on the basis of which two models of criteria are proposed. The process of obtaining the optimal route is described with examples.

Practical relevance: The development of route models for networks with a lattice structure makes it possible to describe data transmission in a network using a classic example, in the most complete form, providing for the worst cases of information load.

Scope of application: Specialized software for the development of computer networks.

Pages: 127-139
For citation

Karandashev A.A., Olenev V.L. Route models in specialized computer networks. Radiotekhnika. 2024. V. 88. № 8. P. 127−139. DOI: https://doi.org/10.18127/j00338486-202408-12 (In Russian)

References
  1. Kim J., Kim T., Hashemi M., Brinton C.G., Love D.J. Joint Optimization of Signal Design and Resource Allocation in Wireless D2D Edge Computing. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 2020. V. 1. №1. P. 2086-2095. DOI:10.1109/INFOCOM41043.2020.9155510/.
  2. Hook J.V., Vaquero T.S., Rossi F., Troesch M., Net M.S., Schoolcraft J., Croix J.D., Chien S.A. Mars On-Site Shared Analytics Information and Computing. International Conference on Automated Planning and Scheduling, 2019. V. 29. № 1. P. 707-715..
  3. Resch M., Bez W., Focht E., Kobayashi H., Patel N. FPGA-Based Scalable Custom Computing Accelerator for Computational Fluid Dynamics Based on Lattice Boltzmann Method. Sustained Simulation Performance 2014. 2015. V. 16. № 1. P. 187–201. DOI:10.1007/978-3-319-10626-7_16.
  4. Schmoll P., Jahromi S.S., Hörmann M., Mühlhauser M., Schmidt K.P., Orús R. Fine Grained Tensor Network Methods. Physical review letters, 2020. V. 124. № 20. P. 1-5. DOI:10.1103/PhysRevLett.124.200603.
  5. Santhuja P., Srinivasan D.S., Sabapathy C., Latha D.N., Kumar S. Route Stability with Node Reliability-Based Auto Reconfiguration in Wireless Mesh Network. 2023 Second International Conference on Smart Technologies for Smart Nation (SmartTechCon), 2023. V. 1. № 1. P. 1271-1275. DOI:10.1109/SmartTechCon57526.2023.10391314.
  6. Murray K., Petelin O., Zhong Sh., Wang J.M., Eldafrawy M., Legault J.-P., Sha E., Graham A.G., Wu J., Walker M., Zeng H., Patros P., Luu J., Kent K.B., Betz V. VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling. ACM Trans. Reconfigurable Technol. V. 13. № 2. 2020. P. 1-55. DOI:10.1145/3388617.
  7. Thiemann T., Bostelmann T., Sawitzki S. Improving the Gradient Descent Based FPGA-Placement Algorithm. CENICS 2020: The Thirteenth International Conference on Advances in Circuits, Electronics and Micro-electronics. 2020. V. 13. № 1. P. 12-24.
  8. Chen Y., Liu Y., Shi X.G., Song J., Liu X., Gan L., Guo C., Fu H., Gao J., Chen D., Yang G. Lifetime-Based Optimization for Simulating Quantum Circuits on a New Sunway Supercomputer. Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. 2022. V. 1. № 1. P. 1-12. DOI:10.1145/3572848.3577529.
  9. Shim K.S., Greskamp B., Towles B., Edwards B., Grossman J.P., Shaw D., Greskamp B., Shaw D. The Specialized High-Per-formance Network on Anton 3. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 2022. V. 1. № 1. P. 1211-1223. DOI:10.1109/HPCA53966.2022.00092.
  10. Shao E., Tan G., Wang Z., Yuan G., Cao Z., Sun N. A New Optoelectronic Hybrid Network Based on Scheduling Optimization of Optical Links. IEEE Transactions on Computers. 2021. V. 70. № 1. P. 863-876. DOI:10.1109/TC.2021.3054308.
  11. Klenk B., Jiang N., Thorson G., Dennison L.R. An In-Network Architecture for Accelerating Shared-Memory Multiprocessor Collectives. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 2020. V. 47. № 1. P. 996-1009. DOI:10.1109/ISCA45697.2020.00085.
  12. Stergiou E. A study of multistage interconnection networks operating with wormhole routing and equipped with multi-lane storage. International Journal of Parallel, Emergent and Distributed Systems. 2020. V. 36. № 1. P. 221-239. DOI:10.1080/17445760.2020.1793981.
  13. Jiang Z.P., Yang Z., Zhang P., Dong C. Design of a high speed router for NOC. Modern Physics Letters B. 2021. V. 35. № 27.
    P. 27-35. DOI:10.1142/S0217984921400121.
  14. Shao E., Wang Z., Yuan G., Tan G., Sun N. Wormhole optical network: a new architecture to solve long diameter problem in exascale computer. CCF Transactions on High Performance Computing. 2019. V. 1. № 1. P. 73-91. DOI:10.1007/s42514-019-00006-8.
  15. Yasrebi S., Reza A., Nikravan M.H., Vazifedan S. A fuzzy integrated congestion-aware routing algorithm for network on chip. Frontiers of Information Technology & Electronic Engineering. 2021. V. 22. № 1. P. 741-755. DOI:10.1631/FITEE.2000069.
  16. Karandashev A.A., Olenev V.L., Britov G.S. Modelirovanie dinamiki informacionnyh potokov v marshrutah vychisli-tel'nyh setej. Informacionno-upravljajushhie sistemy. 2023. Vyp. 124. № 3. S. 39-50. DOI:10.31799/1684-8853-2023-3-39-50 (in Russian).
  17. Karandashev A.A. Dostovernost' modelirovanija dinamicheskih harakteristik vychislitel'nyh setej. Vestnik rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2023. T. 18. № 85. S. 23–35. DOI: 10.21667/1995-4565-2023-85-23-35 (in Russian).
  18. Britov G.S. Verifikacija, validacija i testirovanie komp'juternyh modelej linejnyh dinamicheskih sistem. Informacionno-upravljajushhie sistemy. 2013. T. 63. № 2. S. 75-82 (in Russian).
  19. Britov G.S. Biznes-process testovogo diagnostirovanija linejnyh dinamicheskih sistem na osnove peredatochnyh funk-cij. Sistemnyj analiz i logistika. 2016. T. 12. № 1. S. 4–11 (in Russian).
  20. Gogula S., Damodaran V. Design of a VLSI Router for the Faster Data Transmission using Buffer. 2023 2nd International Con-ference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). 2023. V. 2. № 1. P. 1-5. DOI:10.1109/ICSTSN57873.2023.10151568.
  21. Shruthi R., Shashidhara H.R., Bhargavi R., Dharanendra H.N., Divyashree N., Rahul E.R. Study and Analysis of Wired and Wireless Network-on-Chip Using Noxim. 2023 International Conference on Network, Multimedia and Information Technology (NMITCON). 2023. V. 1. № 1. P. 1-6. DOI:10.1109/NMITCON58196.2023.10276064.
  22. Kumari B.A., AnkithaD V., Anupama N., Keerthana D., PoonamK S. Comparative Analysis of Network Parameters using Noxim Simulator. International Journal of Engineering Technology and Management Sciences. 2022. V. 6. № 6. P. 435-441. DOI:10.46647/ijetms.2022.v06i06.077.
  23. Kamu I.Y., Parinsi M.T., Kuhu M.W., Mananggel A.V. Computer Network Design in Vocational School Using Network Simulator. International Journal of Information Technology and Education. 2022. V. 2. № 1. P. 22-31 DOI:10.62711/ijite.v2i1.86.
  24. Zuenko A.A. Kompaktnoe predstavlenie ogranichenij na osnove novoj interpretacii ponjatija «kortezh mnogomestnogo otnoshenija». Ontologija proektirovanija. 2020. Vyp. 10. № 4. S. 503-515. DOI:10.18287/2223-9537-2020-10-4-503-515 (in Russian).
Date of receipt: 14.06.2024
Approved after review: 19.07.2024
Accepted for publication: 29.07.2024