350 rub
Journal Radioengineering №8 for 2024 г.
Article in number:
Interference immunity of reception of single standband modulation signals with controlled energy parameters
Type of article: scientific article
DOI: 10.18127/j00338486-202408-08
UDC: 621.391
Authors:

S.S. Dvornikov1

1 St. Petersburg State University of Aerospace Instrument Engineering (St. Petersburg, Russia)

1 The Military Academy of Communications n.а. Marshal of the Soviet Union S.M. Budyonny (St. Petersburg, Russia)

1 dvornik92@mail.com

Abstract:

Formulation of the problem. To organize communication in the range of decameter radio waves, single-sideband modulation signals are actively used, since they provide high noise immunity to reception. However, their spectral structure is such that the carrier vibration accounts for 2/3 of the signal energy. Therefore, in practice, various signal forms with partially suppressed carrier wave levels are used. With this approach, irrational distribution of energy occurs, so technical solutions are needed that allow the energy of the signal structure to be redistributed between the carrier oscillation and information components at the synthesis stage. Research methods. The work uses elements of general communication theory, methods of noise-resistant reception, digital signal processing, analytical modeling and systems engineering. Target. Using the mathematical apparatus of quadrature representation of signals, obtain an equation for the analytical synthesis of single-sideband modulation signals, which ensures the redistribution of energy between the carrier vibration and information components by controlling an additional parameter that regulates the level of the pilot signal. And based on the resulting equation, develop a block diagram of the modulator. Results. An analytical equation for the synthesis of modified single-sideband modulation signals is obtained, which realizes the possibility of energy redistribution by controlling the level of the carrier oscillation. A modulator for generating modified signals up to the level of the device block diagram has been developed. Fragments of time representations and spectra of various forms of single-sideband modulation signals are demonstrated. The results of a comparative assessment characterizing the energy gain from the implementation of the developed technical solution are presented. Practical significance. The results can be used to improve the noise immunity of reception on radio communication lines in the decameter radio wave range. In particular, when constructing software synthesis algorithms or technical implementation of single-sideband modulation signal modulators.

Pages: 80-90
For citation

Dvornikov S.S. Interference immunity of reception of single standband modulation signals with controlled energy parameters. Radiotekhnika. 2024. V. 88. № 8. P. 80−90. DOI: https://doi.org/10.18127/j00338486-202408-08 (In Russian)

References
  1. Makarenko S.I. Modeli sistemy svjazi v uslovijah prednamerennyh destabilizirujushhih vozdejstvij i vedenija razvedki. SPb: Izd-vo «Naukoemkie tehnologii». 2020. 337 s. (In Russian).
  2. Zheglov K.D., Dvornikov S.V. Analiz problem organizacii KV svjazi v grazhdanskoj aviacii. Sb. statej V Mezhdunar. foruma «Metrologicheskoe obespechenie innovacionnyh tehnologij». Pod red. V.V. Okrepilova. SPb: Sankt-Peterburgskij gos. un-t ajerokosmicheskogo priborostroenija. 2023. S. 20-21 (In Russian).
  3. Miroshnichenko A.V., Tatarchuk I.A., Shavrin S.S., Fal'kov Je.Ja. Sravnitel'nyj analiz telekommunikacionnyh standartov cifrovoj svjazi grazhdanskoj aviacii VDL MODE 4 i 1090ES. Trudy NII radio. 2020. № 3. S. 35-43. DOI: 10.34832/NIIR.2020.2.3.005 (In Russian).
  4. Procenko M.B., Gromozdin V.V., Kozub M.S., Novikova T.V. Analiz JeMS na beregovom ob’ekte GMSSB i SUDS v diapazone OVCh. Trudy NII radio. 2023. № 3-4. S. 76-82. DOI: 10.34832/NIIR.2023.14.3.007 (In Russian).
  5. Gromozdin V.V., Kovalenko V.I., Ievlev K.V., Kozub M.S. Metodika provedenija naturnyh ispytanij beregovyh ob’ektov GMSSB MR A2. Jelektrosvjaz'. 2022. № 4. S. 21-27. DOI: 10.34832/ELSV.2022.29.4.004 (In Russian).
  6. Vlasenko V.I., Bibarsov M.R., Dvornikov S.V., Dvornikov S.S. Povyshenie jeffektivnosti priema v dekametrovyh linijah radiosvjazi MChS Rossii. Vestnik Sankt-Peterburgskogo un-ta gos. protivopozharnoj sluzhby MChS Rossii. 2022. № 4. S. 91-100 (In Russian).
  7. Pacuk S.V., Il'ichev V.V., Klavdiev A.A., Kurennoj A.N. Sistema radiosvjazi v MChS Rossii. Aktual'nye voprosy pozharnoj bezopasnosti. 2022. № 2(12). S. 41-49. DOI: 10.37657/vniipo.avpb.2022.56.71.005 (In Russian).
  8. Papyrin V.V., Sidorov V.K. Problemy organizacii korotkovolnovoj radiosvjazi v Arktike i vozmozhnye puti ih reshenija. Vestnik Sankt-Peterburgskogo un-ta gos. protivopozharnoj sluzhby MChS Rossii. 2020. № 1. S. 1-4 (In Russian).
  9. Dvornikov S.S., Zheglov K.D., Dvornikov S.V. SSB signals with controlled pilot level. T-Comm. 2023. V. 17. № 3. P. 41-47. DOI: 10.36724/2072-8735-2023-17-3-41-47.
  10. Wang R., Fan Ya., Tan J., et al. A linearized optical single-sideband modulation RoF link with tunable optical carrier-to-sideband ratio. Optics Communications. 2022. V. 511. P. 127991. DOI: 10.1016/j.optcom.2022.127991.
  11. Kassan K., Fares H., Louet Y., Glattli D.C. Performance vs. spectral properties for single-sideband continuous phase modulation. IEEE Transactions on Communications. 2021. V. 69. № 7. P. 4402-4416. DOI: 10.1109/TCOMM.2021.3073792.
  12. Lan Zh., Peng H., Zhao P. A S-transform based algorithm for doppler frequency rate-of-change estimation from coherent pulse train. Journal of Physics: Conference Series. 2022. V. 2218. № 1. P. 012023. DOI: 10.1088/1742-6596/2218/1/012023.
  13. Simonov A., Fokin G., Sevidov V., et al. Polarization direction finding method of interfering radio emission sources. Internet of Things, Smart Spaces, and Next Generation Networks and Systems. St. Petersburg. Russia: Springer Verlag. 2019. V. 11660.
    P. 208-219. DOI: 10.1007/978-3-030-30859-9_18.
  14. Kumar A., Dash S.P. Optimal multi-level amplitude-shift keying modulation for a reliable channel magnitude detection-based receive diversity powerline communication system. IEEE Transactions on Green Communications and Networking. 2022. V. 6. № 4. P. 2168-2178. DOI: 10.1109/tgcn.2022.3172786.
  15. Dvornikov S.V., Dvornikov S.S., Zheglov K.D. Pomehoustojchivost' signalov odnopolosnoj moduljacii s upravljaemym urovnem nesushhego kolebanija. Informatika i avtomatizacija. 2023. T. 22. № 2. S. 261-288. DOI: 10.15622/ia.22.2.2 (In Russian).
  16. Panem Ch., Vetrekar N., Gad R. Data reduction and recovery in wireless communication system: An extensive experimental evaluation using PSK and QAM modulations. International Journal of Communication Systems. 2022. V. 35. № 11. DOI: 10.1002/dac.5198.
  17. Ming Ju., Xiao J., Wu D., et al. Synthesis of a GS-16QAM signal for a simplified optical ISB system and direct detection with the K-means clustering algorithm. Optics Express. 2022. V. 30. № 22. P. 39663. DOI: 10.1364/oe.473283 (In Russian).
  18. Dvornikov S.V., Kuznecov D.A., Kozhevnikov D.A. i dr. Teoreticheskoe obosnovanie sinteza ansamblja biortogonal'nyh signalov s povyshennoj pomehoustojchivost'ju. Voprosy radiojelektroniki. Serija: Tehnika televidenija. 2015. № 5. S. 16-20 (In Russian).
  19. Nerovnyj V.V., Zhuravlev A.V., Kirjushkin V.V., Babusenko S.I., Krasov E.M. Radioperedajushhee ustrojstvo sistem lokal'noj navigacii s adaptivnoj regulirovkoj parametrov spektra radiosignala. Radiotehnika. 2023. T. 87. № 7. S. 67-76. DOI: https://doi.org/10.18127/j00338486-202307-08 (In Russian).
  20. Dvornikov A.S., Gudkov M.A., Ajukov B.A. i dr. Analiz pomehoustojchivosti peredach s odnopolosnoj moduljaciej v kanalah s fluktuacionnymi pomehami. Voprosy radiojelektroniki. Serija: Tehnika televidenija. 2022. № 4. S. 58-64 (In Russian).
  21. Kohanov A.B. Amplitudnaja, balansnaja i odnopolosnaja moduljacii Hartli. Izvestija vysshih uchebnyh zavedenij. Ser. Radiojelektronika. 2022. V. 65. № 6. P. 352-363. DOI: 10.20535/s0021347022060036 (In Russian).
  22. Zheglov K.D. Model' signala odnopolosnoj moduljacii s variativnym urovnem nesushhego kolebanija. Voprosy radiojelektroniki. Ser. Tehnika televidenija. 2023. № 2. S. 75-81 (In Russian).
  23. Lapunov S.I., Roenkov D.N., Plehanov P.A., Gluhov I.A. Primenenie sistem korotkovolnovoj radiosvjazi na malointensivnyh zheleznodorozhnyh uchastkah. Avtomatika, svjaz', informatika. 2022. № 9. S. 4-8. DOI: 10.34649/AT.2022.9.9.001 (In Russian).
  24. Kalinin A.L. Novoe pokolenie korotkovolnovyh radioperedajushhih ustrojstv bol'shoj moshhnosti. Tehnika sredstv svjazi. 2021. № 3(155). S. 10-17 (In Russian).
  25. Belousov A.Yu., Khvorenkov V.V. Research of the influence of the quadrature components mismatch on the noise immunity of OFDM and UFMC signals. Vestnik IzhGTU imeni M.T. Kalashnikova. 2022. V. 25. № 2. P. 72-78. –DOI: 10.22213/2413-1172-2022-2-72-78.
  26. Babusenko S.I., Kirjushkin V.V., Zhuravlev A.V., Isaev V.V. Model' trakta formirovanija i usilenija gruppovogo radiosignala, osnovannogo na metode defazirovanija. Radiotehnika. 2022. T. 86. № 7. S. 100-106. DOI: https://doi.org/10.18127/j00338486-202207-16 (In Russian).
  27. Vinogradova E.P. Sposob postroenija korreljacionno-jekstremal'noj navigacionnoj sistemy na osnove preobrazovanija Gil'berta. Uspehi sovremennoj radiojelektroniki. 2023. T. 77. № 8. S. 77-83. DOI: 10.18127/j20700784-202308-10 (In Russian).
  28. Wu Bo., Zhu Y., Dong R., et al. Pre-braking behaviors analysis based on Hilbert–Huang transform. CCF Transactions on Pervasive Computing and Interaction. 2023. V. 5. № 2. P. 157-182. DOI: 10.1007/s42486-022-00123-4.
  29. Morozov O.G., Sakhabutdinov A.Zh., Sokolov V.S., et al. Two-frequency DSB-SC modulation for relative frequency response measurement of mach-zehnder amplitude modulators. Systems of Signals Generating and Processing in the Field of on Board Communications. 2023. V. 6. № 1. P. 328-331. DOI: 10.1109/IEEECONF56737.2023.10092131.
  30. Huang C., Chan E.H.W. Photonic Techniques for generating a single RF sideband with no second order sidebands. IEEE Photonics Journal. 2022. V. 14. № 1. DOI: 10.1109/JPHOT.2021.3123168.
  31. Dvornikov S.V. Teoreticheskie osnovy sinteza bilinejnyh raspredelenij jenergii nestacionarnyh processov v chastotno-vremennom prostranstve (obzor). Trudy uchebnyh zavedenij svjazi. 2018. T. 4. № 1. S. 47-60 (In Russian).
  32. Dvornikov S.V., Ovchinnikov G.R., Balykov A.A. Programmnyj simuljator ionosfernogo radiokanala dekametrovogo diapozona. Informacija i kosmos. 2019. № 3. S. 6-12 (In Russian).
  33. Dvornikov S.V., Dvornikov S.S., Pshenichnikov A.V. Apparat analiza chastotnogo resursa dlja rezhima psevdosluchajnoj perestrojki rabochej chastoty. Informacionno-upravljajushhie sistemy. 2019. № 4(101). S. 62-68 (In Russian).
  34. Dvornikov S.V., Saukov A.M. Modifikacija chastotno-vremennyh opisanij nestacionarnyh processov na osnove pokazatel'nyh i stepennyh funkcij. Nauchnoe priborostroenie. 2004. T. 14. № 3. S. 76-85 (In Russian).
Date of receipt: 24.06.2024
Approved after review: 28.06.2024
Accepted for publication: 04.07.2024