A.R. Bestugin1, I.A. Kirshina1, O.P. Kurkova3
1-3 St. Petersburg State University of Aerospace Instrument Engineering (St. Petersburg, Russia)
1 fresguap@mail.ru; 2 ikirshina@mail.ru; 3 aljaskaolga@mail.ru
Welded spacecraft body structures made of aluminium or magnesium alloys are subject to high requirements for shape formation and dimensional stability. In the process of their manufacturing there is a high probability of ‘spontaneous’ change of their geometry and/or integrity violation, which is caused by residual stresses. In order to obtain reliable information about the absence of residual stresses, it is necessary to carry out operative step-by-step control directly in the manufacturing process. Introduction of ultrasonic diagnostics is a promising option for solving this problem. Transition to the practical implementation of this method in industrial production requires additional research aimed at studying and clarifying a number of regularities of the process, the creation of a special set of measuring equipment.
The aim of the research was to analyse the physical features of the method of ultrasonic diagnostics of residual stresses, to choose the most appropriate principle of the method implementation for diagnostics of residual stresses in welded hull structures of space engineering products made of aluminium or magnesium alloys, to study the factors influencing the accuracy of measurements.
The expediency of using a method based on the acoustoelastic effect, which is realised by using longitudinal waves with critical refraction, transducers in the form of probes functioning according to the principle of ‘step catching’ has been substantiated. It is established that the distance between the transmitter and receivers in the ultrasonic probe and the frequency parameter have a significant effect on the accuracy of measurement results. It is shown that to improve the accuracy of measurements the frequency parameter requires optimisation depending on the actual thickness of the diagnosed material, design and energy parameters of the probe, aimed simultaneously at increasing the penetration depth, reducing the interference caused by the shear wave, increasing the sensitivity of the transducer.
The obtained results confirm the possibility and expediency of application of ultrasonic diagnostics of residual stresses of the first kind in welded structures in the process of their manufacturing and can be used for creation of a special complex of measuring equipment.
Bestugin A.R., Kirshina I.A., Kurkova O.P. Ultrasonic diagnostics residual stress fields welded hull structures of space technology made of aluminum and magnesium alloys. Radiotekhnika. 2024. V. 88. № 8. P. 45−53. DOI: https://doi.org/10.18127/j00338486-202408-05 (In Russian)
- Kurkova O.P. Novyj podhod k proektirovaniju i konstruirovaniju razmerostabil'nyh korpusnyh svarnyh konstrukcij kosmicheskih letatel'nyh apparatov. SPb: «Borej-ART». 2008. 128 s. (In Russian).
- Bugaev A.S., Ivashov S.I., Razevig V.V., Chizh M.A. Sravnenie SVCh-diagnostiki s drugimi metodami nerazrushajushhego kontrolja kompozicionnyh izdelij. Uspehi sovremennoj radiojelektroniki. 2020. T. 74. № 4–5. S. 19–38. DOI: 10.18127/j20700784-202004-02 (In Russian).
- OST 92-1186. Svarka dugovaja detalej iz metallov i splavov v zashhitnoj srede inertnyh gazov. Tehnicheskie trebovanija. M.: Nacional'noe agentstvo kontrolja svarki. 2021. 128 s. (In Russian).
- Gatovskij K.M., Karhin V.A. Teorija svarochnyh deformacij i naprjazhenij. L.: Izd-vo Leningradskogo Ordena Lenina korablestroitel'nogo instituta. 1980. 331 s. (In Russian).
- Kasatkin B.S., Kudrin A.B., Lobanov L.M. Jeksperimental'nye metody issledovanija deformacij i naprjazhenij: spravochnoe posobie. Kiev: Naukova dumka. 1981. 583 s. (In Russian).
- Turan M.E., Aydin F., Sun Y., Cetin M. Residual stress measurement by strain gauge and X-ray diffraction method in different shaped rails. Engineering Failure Analysis. 2019. V. 96. Р. 525–529.
- Hwang Y.I., Kim Y.I., Seo D.C., Seo M.K., Lee W.S., Kwon S., Kim K.B. Experimental consideration of conditions for measuring residual stresses of rails using magnetic barkhausen noise method. Materials. 2021. V. 14. № 18. Р 5374–5386.
- Chakrabarti R., Biswas P., Saha S.C. A review on welding residual stress measurement by hole drilling technique and its importance. Journal Welding and Joining. 2018. V. 36. № 4. P. 75–82.
- Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method. Chinese Journal of Mechanical Engineering. 2016. V. 29. № 2. P. 365–371.
- Zhan Y., Liu C., Kong X., Lin Z. Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics. 2017. V. 73. P. 271–276.
- Kamyshev A.V., Pasmanik L.A., Smirnov V.A., Modestov V.S., Pivkov A.V. Raschetno-instrumental'nyj metod ocenki naprjazhenno-deformirovannogo sostojanija s opredeleniem silovyh granichnyh uslovij metodom akustouprugosti i ego primenenie dlja analiza povrezhdaemosti svarnogo soedinenija № 111 parogeneratorov AJeS s RU VVJeR. Tjazheloe mashinostroenie. 2016. № 1-2. S. 11-18 (In Russian).
- Kudryavtsev Y., Kleiman J. Measurement of Residual Stresses in Welded Elements and Structures by Ultrasonic Method. International Institute of Welding. IIW Document XIII-2339-10. Paris. France: International Institute of Welding. 2010. 14 p.
- Kudryavtsev Y., Kleiman J., Gushcha О. Ultrasonic measurement of residual stresses in welded railway bridge. Structural Materials Technology: An NDT Conference. Feb. 28 – March 3 Atlantic City. 2000. Р. 213-218.
- Kudryavtsev Y, Kleiman J. Ultrasonic measurement of residual stresses in welded elements and structures. Technical Report «Structural Integrity Services, Inc.». 2024. Р. 9. [Jelektronnyj resurs]. URL: file:///C:/Users/79045/Downloads/Ultra-sonicMeasurementsof Residual Stresses.pdf (data obrashhenija 25.03.2024)
- Potapov V.V., Kuz'min D.A., Getman A.F., Kuz'michevskij A.Ju. i dr. Ob aktual'nosti kontrolja ostatochnyh naprjazhenij i ih snizhenija. Global'naja jadernaja bezopasnost'. 2024. № 14(1). S. 68-75 (In Russian).
- Mishanin V.V. Issledovanie vlijanija plasticheskoj deformacii na jeffekt akustouprugosti. Nelinejnyj mir. 2009. № 10. S. 787-791 (In Russian).
- Beher S.A., Kochetkov A.S. Osnovy ul'trazvukovogo kontrolja. Novosibirsk: Sibirskij gos. un-t putej soobshhenija. 2013. 64 s. (In
Russian).