350 rub
Journal Radioengineering №7 for 2024 г.
Article in number:
Method for determining the types of encryption of linear block codes
Type of article: scientific article
DOI: 10.18127/j00338486-202407-08
UDC: 621.396.67
Authors:

M.V. Khoroshailova1, А.V. Kuznetsov2, A.S. Demikhova3

1,3 FSBEI of HE “Voronezh State Technical University” (Voronezh, Russia)

2 Voronezh Central Design Bureau Polyus JSC (Voronezh, Russia)

1 pmv2205@mail.ru, 2, 3 kipr@vorstu.ru

Abstract:

Problem statement. All known methods for determining the parameters of the encrypted code are based on known types of channel encoding and encryption, but the scrambling code data received by the uncoordinated communication parties is unknown, therefore it is necessary to analyze whether the outgoing signal is encoded, and which encryption method is adopted, contributing to further parameter determination.

Goal. Development of a methodology for determining the types of encryption of linear block codes by combining correlation features and convolutional neural networks.

Results. The simulation results show that compared with the traditional feature detection method, this method, based on a convolutional neural network and long short-term memory, has a better recognition speed at BER and can recognize the type of encryption of linear block code in BER and noise conditions.

Practical significance. The identification of the encryption code parameters is used to subsequently determine the parameters of the encoder and has significant practical engineering value.

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment "youth laboratory" No. FZGM-2024-0003.

Pages: 40-44
For citation

Khoroshailova M.V., Kuznetsov А.V., Demikhova A.S. Method for determining the types of encryption of linear block codes. Radiotekhnika. 2024. V. 88. № 7. P. 40−44. DOI: https://doi.org/10.18127/j00338486-202407-08 (In Russian)

References
  1. Horoshajlova M.V., Sviridova I.V., Cipina K.D. Rekonfiguriruemyj nizkoplotnostnyj dekoder dlja mnogourovnevyh besprovodnyh lokal'nyh setej. Radiotehnika. 2023. T. 87. № 8. S. 94-99. DOI: https://doi.org/10.18127/j00338486-202308-15 (in Russian).
  2. Bandara K., Bergmeir C., Hewamalage H. LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple
    seasonal patterns. IEEE Trans. Neural Netw. Learn. Syst. 2021. № 32. Р. 1586–1599.
  3. Horoshajlova M.V. Arhitektura dlja stohasticheskih LDPC-dekoderov c ispol'zovaniem jeffektivnoj ploshhadi kristalla na osnove PLIS. Vestnik Voronezhskogo gos. tehnich. un-ta. 2018. T. 14. № 1. S. 95-100 (in Russian).
  4. Bashkirov A.V., Horoshajlova M.V. Algoritmy nizkoj slozhnosti dekodirovanija i arhitektura dlja nedvoichnyh nizkoplot-nostnyh kodov. Radiotehnika. 2016. № 6. S. 10-14 (in Russian).
  5. Zhang L.M., Tan J.Y., Zhong Z.G. Blind identification of self-synchronous scrambling codes based on cosine coincidence. J. Electron. Inf. Technol. 2022. № 44. Р. 1412–1420.
  6. Ma Y., Zhang L.M. Reconstruction of scrambler with real-time test. J. Electron. Inf. Technol. 2016. № 38. Р. 1794–1799.
Date of receipt: 20.05.2024
Approved after review: 27.05.2024
Accepted for publication: 28.06.2024