350 rub
Journal Radioengineering №6 for 2024 г.
Article in number:
Sensitivity evaluation of optical receiver mixers
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202406-20
UDC: 621.391
Authors:

A.R. Bestugin1, A.A. Pogorelov2, S.V. Dvornikov3, S.S. Dvornikov4, I.A. Kirshina5

1, 3-5 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

2-4 Military Academy of Communications n.a. Marshal of the Soviet Union S.M. Budyonny (St. Petersburg, Russia)

1 fresguap@mail.ru; 2 anpog@yandex.ru; 3 practicdsv@yandex.ru; 4 dvornic92@mail.ru; 5 ikirshina@mail.ru

Abstract:

In optical receivers for realisation of procedures of heterodyning of a signal, both at a stage of formation, and at reception, as a rule, diodes are used. At the same time diodes, being electronic devices, are characterised by internal noises, which limit the sensitivity of reception. The nature of internal noise of electronic devices is determined by thermal processes and shot effect, which in their turn are determined not only by the ambient background temperature, but also by the frequency of received radiations.

To present the results of estimation of the threshold sensitivity of diode mixers in heterodyning paths of optical receivers.

Results are presented on the development of an approach to sensitivity estimation of heterodyne receiver mixer estimation. Estimation expressions for calculating the internal noise level of an optical mixer are obtained. The approach of shot noise estimation characterising the threshold sensitivity from the position of noise temperature is proposed. Simplified expressions of dependence of threshold sensitivity as a function of radiation frequency at a given temperature are obtained. Noise values in terms of temperature for different frequencies are calculated. A practical method of measuring the noise temperature, which characterises the sensitivity of reception, based on measuring the output voltage when receiving signals from sources with known temperatures of emitters, is substantiated. The values of the signal-to-noise ratio of the threshold sensitivity for different frequency ranges are presented.

The obtained analytical expressions allow us to conclude that the rational solution is the choice of the frequency range in the region of 0.1…1 THz, because it is characterised by a relatively low noise temperature, but at the same time it is able to provide a high speed of message transmission.

Pages: 170-177
For citation

Bestugin A.R., Pogorelov A.A., Dvornikov S.V., Dvornikov S.S., Kirshina I.A. Sensitivity evaluation of optical receiver mixers. Radiotekhnika. 2024. V. 88. № 6. P. 170−177. DOI: https://doi.org/10.18127/j00338486-202406-20 (In Russian)

References
  1. Mitrohin V., Strogonov A., Gurov A., Ljalin D. Fotop'ezojelektricheskij priemnik opticheskih signalov na poverh-nostnyh akusticheskih volnah. Jelektronika: Nauka, tehnologija, biznes. 2023. № 6(227). S. 60-65. DOI 10.22184/1992-4178.2023.227.6.60.62 (in Russian).
  2. Zalesskij V.B., Gulakov I.R., Zenevich A.O. i dr. Issledovanie propusknoj sposobnosti opticheskogo kanala s priemnikom informacii v vide kremnievogo fotojelektronnogo umnozhitelja. Izvestija vysshih uchebnyh zavedenij. Ser. Jelektronika. 2022. T. 27. № 1. S. 50-58. DOI: 10.24151/1561-5405-2022-27-1-50-58 (in Russian).
  3. Kozirackij A.Ju., Grevcev A.I., Burov R.I. Podhod k opredeleniju velichiny dinamicheskogo diapazona opticheskogo priemnika, realizujushhego metody prjamogo i geterodinnogo detektirovanija. Vestnik Voronezhskogo gosudarstvenno-go tehnicheskogo universiteta. 2020. T. 16, № 5. S. 86-91. DOI: 10.36622/VSTU.2020.16.5.012 (in Russian).
  4. Malin T.V., Gilinskij A.M., Mansurov V.G. i dr. Sintez AlGaN/GaN-geterostruktur dlja ul'trafioletovyh fotopri-emnikov metodom molekuljarno-luchevoj jepitaksii. Zhurnal tehnicheskoj fiziki. 2015. T. 85. № 4. S. 67-73 (in Russian).
  5. Andrijanova V.A., Drozdova K.A., Nikitin V.A. i dr. Issledovanie integral'nogo smesitelja na osnove mnogomodovoj interferencii izluchenija. Internauka. 2022. № 10-3(233). S. 15-19 (in Russian).
  6. Protopopov V.V., Ustimov N.D. Lazernoe geterodinirovanie: monografija. M.: Nauka. 1985. 228 s. (in Russian).
  7. Gudkov A.G., Tihomirov V.G., Chizhikov S.V. Geterostrukturnyj tranzistor dlja jenergojeffektivnogo maloshumjashhego usilitelja radiotermografa na osnove monolitnyh integral'nyh shem. Radiotehnika. 2023. T. 87. № 3. S. 166-173. DOI: 10.18127/j00338486-202303-16 (in Russian).
  8. Macaev A.S., Macaev A.A. Fliker-shum ili fluktuacionnyj drejf rabochej tochki. Uspehi sovremennoj radiojelek-troniki. 2022. T. 76. № 7. P. 51-73. DOI: 10.18127/j20700784-202107-05 (in Russian).
  9. Burlakov I.D., Grinchenko L.Ja., Dirochka A.I., Zaletaev N.B. Detektory korotkovolnovogo IK-diapazona na osnove InGaAs (obzor). Uspehi prikladnoj fiziki. 2014. T. 2. № 2. S. 131-162 (in Russian).
  10. Lebedev V.V., Petrov V.M., Il'ichev I.V. i dr. Istochnik kvantovogo shuma na osnove detektirovanija drobovogo shuma balansnogo fotopriemnika s upravljaemym integral'no-opticheskim svetodelitelem. Pis'ma v Zhurnal tehnicheskoj fiziki. 2021. T. 47. № 21. S. 10-12. DOI: 10.21883/PJTF.2021.21.51620.18870 (in Russian).
  11. Levin G.G., Ljaskovskij V.L., Samojlenko A.A., Min'kov K.N. O kvantovoj jeffektivnosti priemnikov malofotonnogo opticheskogo izluchenija. Zakonodatel'naja i prikladnaja metrologija. 2019. № 2(159). S. 10-13 (in Russian).
  12. Halili F.Ja. Kvantovye izmerenija v detektorah gravitacionnyh voln. Uspehi fizicheskih nauk. 2016. T. 186. № 10. S. 1059-1089. DOI: 10.3367/UFNr.2016.07.037866 (in Russian).
  13. Lebedev V.V., Petrov A.N., Parfenov M.V. i dr. Sopostavlenie metodov kompensacii poljarizacionnogo fedinga volokonno-opticheskih linij peredachi analogovyh shirokopolosnyh signalov po vnosimym shumam i dostizhimomu dinamicheskomu diapazonu. Zhurnal tehnicheskoj fiziki. 2021. T. 91. № 11. S. 1738-1743. DOI: 10.21883/JTF.2021.11.51537.94-21 (in Russian).
  14. Isaev V.I. Dzh. Rjelej i istorija otkrytija zakona teplovogo izluchenija Rjeleja-Dzhinsa. Vestnik Moskovskogo gosudar-stvennogo oblastnogo universiteta. Ser. Fizika-matematika. 2019. № 2. S. 96-105. DOI: 10.18384/2310-7251-2019-2-96-105 (in Russian).
  15. Dvornikov S.V. Metod obnaruzhenija na osnove posimvol'nogo peremnozhenija realizacij spektra nabljudaemogo processa s avtomaticheskim raschetom poroga prinjatija reshenija. Nauchnoe priborostroenie. 2004. T. 14. № 4. S. 92-97 (in Russian).
  16. Ovsjannikov V.A., Ovsjannikov Ja.V. O porogovoj chuvstvitel'nosti neskanirujushhih teplovizionnyh priborov, rabotajushhih po naklonnym atmosfernym trassam. Opticheskij zhurnal. 2022. T. 89. № 10. S. 13-25. DOI: 10.17586/1023-5086-2022-89-10-13-25 (in Russian).
  17. Dvornikov S.V., Kudrjavcev A.M. Teoreticheskie osnovy chastotno-vremennogo analiza kratkovremennyh signalov: mo-nografija. SPb: VAS. 2010. 240 s. (in Russian).
Date of receipt: 11.01.2024
Approved after review: 15.01.2024
Accepted for publication: 30.01.2024