350 rub
Journal Radioengineering №6 for 2024 г.
Article in number:
Method for measuring radiation patterns of digital antenna arrays
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202406-18
UDC: 621.396.677
Authors:

V.I. Djigan1

1 Institute for Design Problems in Microelectronics of RAS (Zelenograd, Moscow, Russia)

1 djigan@ippm.ru

Abstract:

Formulation of the problem. The Digital Beamforming Antenna Arrays (DBAA) are widely used as the directional antennas in radio systems today. However, such arrays typically do not have a radiofrequency output. Consequently, the standard methods for measuring the Radiation Patterns (RP), based on the transmitting of a monochromatic probing signals, reception of the signals in the far field, as well as measuring the output power of the antenna array, cannot be used to measure the RP of the DBAA. The method considered in this work involves the transmitting a probing signal modulated by a pseudonoise sequence and processing the DBAA output signal at the zero intermediate frequency (base-band) using a matched filter or a correlator.

Target. A method for measuring the radiation pattern of the DBAA is considered, based on the correlation processing of its output signal.

Results. The paper presents a description of the setup for measuring the DBAA RP, as well as a mathematical explanation of the measurement procedure. It is shown that the accuracy of the RP measurement depends on the Signal-to-Noise Ratio (SNR) at the outputs of the receivers of the DBAA channels, and the number of array channels and the number of symbols of the pseudonoise sequence used for the modulation of the radiated signal. The error in the RP measurement decreases by 3 dB each time as the number of the DBAA channels or the number of symbols of the pseudonoise sequence used in the measurements is doubled. This result is confirmed by simulation the measurement of RP of the eight- and sixteen-channel linear DBAA using pseudo-noise sequences of maximum length (M-sequences) with a number of symbols equal to 1023 and 2047.

Practical significance. The proposed method does not require the usage of the up-converter to convert the base-band DBAA output signal from the base-band to a carrier frequency, and it also does not require the usage of a power meter for measurement the analog signal at the output of this converter.

Pages: 149-158
For citation

Djigan V.I. Method for measuring radiation patterns of digital antenna arrays. Radiotekhnika. 2024. V. 88. № 6. P. 149−158. DOI: https://doi.org/10.18127/j00338486-202406-18 (In Russian)

References
  1. Benenson L.S., Zhuravlev V.A., Popov S.V., Postnov G.A. Antennye reshetki. Metody rascheta i proektirovanija. Obzor zarubezhnyh rabot. M.: Sovetskoe radio. 1966. 367 s. (in Russian).
  2. Aktivnye fazirovannye antennye reshetki. Pod. red. D.I. Voskresenskogo i A.I. Kanashhenkova, M.: Radiotehnika. 2004. 488 s. (in Russian).
  3. Balanis C.A. Antenna theory: analysis and design (4th ed.). Wiley. 2016. 1104 p.
  4. Maillou R.J. Phased array antenna handbook. 3rd ed. Artech House, Inc. 2017. 506 p.
  5. Brown A.D., Boeringer D., Cooke T. Electronically scanned arrays. MATLAB® modelling and simulation. CRC Press. 2012. 214 p.
  6. Williams J.S. Electronic scanned array design (radar, sonar and navigation). Scitech Publishing. 2021. 357 p.
  7. Sharma S.K., Chieh J.-C.S. Multifunctional antennas and arrays for wireless communication systems. Wiley-IEEE Press. 2021. 458 p.
  8. Guo J.G., Ziolkowski R.W. Antenna and array technologies for future wireless ecosystems. Wiley-IEEE Press. 2022. 461 p.
  9. Samojlenko V.I., Shishov Ju.A. Upravlenie fazirovannymi antennymi reshetkami. M.: Radio i svjaz'. 1983. 240 s. (in Russian).
  10. Steyskal H. Digital beamforming antennas. Microwave Journal. 1987. № 1. P. 107–124.
  11. Litva J., T.K.-Y. Lo. Digital beamforming in wireless communications. Artech House. 1996, 301 p.
  12. Grigor'ev L.N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannyh antennyh reshetkah. M.: Radiotehnika. 2010. 144 s. (in Russian).
  13. Dillinge M., Madani K., Alonistiot N. Software defined radio: architectures, systems and functions. Wiley. 2007. 454 p.
  14. Oppenheim A.V., Schafer R.W. Discrete-time signals processing. Prentice-Hall. 2009. 1144 p.
  15. Darabi H. Radiofrequency integrated circuits and systems. 2-nd ed. Cambridge University Press. 2020. 778 p.
  16. Woods R., McAllister J., Lightbody G., Ying Yi. FPGA-based implementation of signal processing systems. 2nd ed. Willey. 2017. 360 p.
  17. Kuo S.M., Gan W.-S. Digital signal processors: architectures, implementations and applications. Prentice Hall. 2004. 624 p.
  18. Vitjazev S.V. Cifrovye processory obrabotki signalov. M.: Gorjachaja linija – Telekom. 2017. 100 s. (in Russian).
  19. Evans G.E. Antenna measurements techniques. Artech House Publishers. 1990. 240 p.
  20. Kurochkin A.P. Teorija i tehnika antennyh izmerenij. Antenny. 2009. № 7. S. 39–45 (in Russian).
  21. Varakin L.E. Sistemy svjazi s shumopodobnymi signalami. M.: Radio i svjaz'. 1985. 384 s. (in Russian).
  22. Dzhigan V.I. Adaptivnyj metod identifikacii neodnorodnostej v provodnyh kanalah svjazi. Izmeritel'naja tehnika. 2006. № 7. C. 55–59 (in Russian).
  23. Monzingo R.A., Haupt R.L., Miller T.W. Introduction to adaptive arrays, 2nd ed. SciTech Publishing. 2011. 510 p.
  24. Dzhigan V.I. Antennaja reshetka s chastichnoj adaptaciej na osnove rekursivnyh algoritmov po kriteriju naimen'shih kvadratov v arifmetike dejstvitel'nyh chisel. Radiotehnika. 2023. № 1. S. 144–157. DOI: https://doi.org/10.18127/j00338486-202301-11 (in Russian).
  25. Dzhigan V.I. Osobennosti adaptivnoj obrabotki signalov v kol'cevyh antennyh reshetkah. Radiotehnika. 2023. № 7. S. 115–126. DOI: https://doi.org/10.18127/j00338486-202307-12 (in Russian).
Date of receipt: 26.12.2023
Approved after review: 11.01.2024
Accepted for publication: 29.03.2024