350 rub
Journal Radioengineering №6 for 2024 г.
Article in number:
Blind channel evaluation using OFDM-FHSS technology
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202406-14
UDC: 621.396.42
Authors:

V.G. Kartashevsky1, E.S. Semenov2, V.A. Cymbal3

1 Povolgsky State University of Telecommunications and Informatics (Samara, Russia)

2 Volgograd State University (Volgograd, Russia)

3 Branch of the Military Academy of the RVSN named after Peter the Great (Serpukhov, Russia)

1 vgkartash@ya.ru; 2 essemenov@mail.ru; 3 tsimbalva@mail.ru

Abstract:

Pseudo-random tuning of the operating frequency (PRFC) is one of the effective methods of spectrum expansion, in which the signal occupies a frequency band significantly wider than the minimum required for transmitting information. Тhe operating frequency of the signal is hopped over a wide range of the frequency range allocated for communication in accordance with a pseudo-random code, known only on the receiving side and unknown to anyone trying to intercept a radio transmission or organize jamming.

The main disadvantage of HFPR is the low data transfer rate. Therefore, recently there have been ideas of using the hopping method with broadband signals, for example OFDM-hopping where the frequency changes within a set of orthogonal carriers. This approach makes it possible to preserve the advantages of the frequency converter method, supplementing them with the ability to implement high-speed digital communications.

The paper considers the situation when one OFDM symbol is transmitted in the time interval of one hop, formed without a prefix and postfix. In this case, the transmission signal in the time interval of one step was a set of sequentially transmitted complex samples of the OFDM symbol envelope. Samples of the OFDM symbol envelope, after they are generated during transmission in the OBPF block, must be sequentially transmitted over a communication channel whose properties are unknown.

In the case when there is temporary dissipation of the energy of the transmitted signal in the channel (channel memory), during the sequential transmission of complex samples of the OFDM symbol envelope, due to temporary dissipation, each of the previous samples will have an interference effect on any transmitted sample at reception.

Assuming that the channel parameters are constant over the analysis interval at the receiving location, it is necessary, with an unknown impulse response of the channel, to generate estimates of the OFDM symbol envelope samples, which, in order to solve the demodulation problem, must be subjected to the FFT calculation operation. The constancy of the channel parameters over the analysis interval allows us to solve the problem of estimating samples of the channel impulse response using blind identification based on the maximum likelihood method. In this case, it is necessary to use diversity reception and impose some non-burdensome restrictions on the statistical properties of the transmitted message. After solving the problem of identifying the impulse response of a channel with memory, the problem of estimating the components of the sample vector of the envelope of the received OFDM symbol is solved by the regularization method. Using the “reception “as a whole” with element-by-element assessment generation” (PCPFO) algorithm and using “assessment feedback” (EFE), minimization of the regularizing functional leads to the solution of a system of linear algebraic equations, the order of which is determined by the number of samples of the impulse response of the communication channel with memory.

By modeling, the upper limit of noise immunity for receiving OFDM-QAM-4 signals was obtained with a Gaussian distribution of errors in estimating OFDM-symbol envelope samples. The proposed procedure for normalizing envelope samples after solving systems of linear equations eliminates the appearance of outliers characteristic of the generated noise sequence.

Pages: 110-120
For citation

Kartashevsky V.G., Semenov E.S., Cymbal V.A. Blind channel evaluation using OFDM-FHSS technology. Radiotekhnika. 2024. V. 88. № 6. P. 110−120. DOI: https://doi.org/10.18127/j00338486-202406-14 (In Russian)

References
  1. Borisov V.I., Zinchuk V.M., Nikolaev V.I. i dr. Sistemy radiosvjazi s rasshireniem spektra signalov (analiticheskij obzor). Teorija i tehnika radiosvjazi. 1998. Vyp. 1. S. 18-48.  (in Russian).
  2. Karpuhin E.O., Mazepa R.B., Mihajlov V.Ju. Issledovanie perspektivnyh signal'no-kodovyh konstrukcij na osnove FH-OFDM pri vozdejstvii Doplerovskogo sdviga chastoty. Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. 2016. T. 8. № 1. S. 12–16 (in Russian).
  3. Strokova A.Ju., Frolov A.N., Aleshechkin A.M. Jeffektivnost' ispol'zovanija OFDM v troposfernom kanale svjazi, sposoby povyshenija pomehoustojchivosti. Vestnik SibGAU. № 2(48). 2013. S. 91-94 (in Russian).
  4. Dvornikov S.V., Pshenichnikov A.V., Manaenko S.S. Statisticheskie harakteristiki pomehozashhishhennyh radiolinij s upravleniem chastotnym resursom. Informacionnye tehnologii. 2019. T. 25. № 1. S. 35-40 (in Russian).
  5. Ivanov D.V., Ivanov V.A., Rjabova N.V., Ovchinnikov V.V., Katkov E.V. Metod dopolnitel'nogo povyshenija skrytnosti i pomehoustojchivosti sistem shirokopolosnoj KV-radiosvjazi, rabotajushhih v dispergirujushhih ionosfernyh kanalah. Tezisy dokladov VI Mezhdunar. nauch.-tehnich. konf. «Radiotehnika, jelektronika i svjaz'». Omsk: ONIIP. 2021. S. 83–85 (in Russian).
  6. Kartashevskij V.G., Semenov E.S., Cimbal V.A. Ispol'zovanie OFDM-signalov v tehnologii psevdosluchajnoj perestrojki rabochej chastoty. Radiotehnika. 2024. T. 88. № 2. S. 118−126. DOI: https://doi.org/10.18127/j00338486-202402-15 (in Russian).
  7. Kartashevskij V.G., Semenov E.S. Slepoe ocenivanie parametrov chastotno-selektivnyh kanalov v sistemah OFDM. Jelektrosvjaz'. 2023. № 10. S. 64-70 (in Russian).
  8. Ruifeng Z. Blind Channel Estimation for Precoded OFDM System. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05). IEEE. 2005. P. 469-472. DOI: 10.1109/ICASSP.2005.1415748.
  9. Petropulu A., Zhang R., Lin R. Blind OFDM Channel Estimation Through Simple Linear Precoding. IEEE Transactions on Wireless Communications. 2004. V. 3. Is. 2. P. 647-655. DOI: 10.1109/TWC.2003.821140.
  10. Gao F., Nallanathan A.A. A simple subspace-based blind channel estimation for OFDM systems. IEEE Wireless Communications and Networking Conference (WCNC 2006). 2006. P. 1515-1518. DOI: 10.1109/WCNC.2006.1696512.
  11. Gorjachkin O.V. Metody slepoj obrabotki signalov i ih prilozhenija v sistemah radiotehniki i svjazi. M.: Radio i svjaz'. 2003. 230 s. (in Russian)
  12. Prokis Dzh. Cifrovaja svjaz'. Per. s angl. Pod red. D.D. Klovskogo. M.: Radio i svjaz'. 2000. 800 s. (in Russian).
  13. Kartashevskij V.G., Shatilov S.V. Priem paketov signalov FM-4 v kanalah s rassejaniem. Radiotehnika. 2011. T. 65. № 7. S. 26-35 (in Russian).
  14. Abed-Meraim K., Qiu W., Hua Y. Blind system identification. IEEE Proceedings. 1997. V. 85. Р. 1308-1322.
  15. Hua Y. Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Transactions on Signal Processing. Mar. 1996. V. 44. Р. 661-672.
  16. Gantmaher F.R. Teorija matric. M.: Nauka. 1967. 576 s. (in Russian).
Date of receipt: 05.02.2024
Approved after review: 08.02.2024
Accepted for publication: 27.05.2024