350 rub
Journal Radioengineering №6 for 2024 г.
Article in number:
Dynamic model of the functional parameter degradation changes in radio-electronic systems with two non-stationary random components corresponding to two types of noise
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202406-12
UDC: 621.382
Authors:

I.I. Stolyarov1

1 OJSC North-West Regional Centre of Concern VKO «Almaz-Antey» – Obukhov Plant (Saint Petersburg, Russia)

1 i.stolyarov@goz.ru

Abstract:

Problem statement. The processes of aging and degradation caused by the influence of environmental conditions, leading to changes in the functional parameters of radio-electronic systems, negatively affect the output characteristics and reduce the period of operation. The currently existing model of changes in radio-electronic system parameters, used for individual forecasting by extrapolation, includes only one random component representing various types of noise. At the same time, practical studies shows that the maximum amplitudes of different types of noise change at different rates. Therefore, for a more complete representation of the process of electromagnetic parameter changes over time, it is necessary to develop a model that takes into account this effect. The article discusses this problem using the example of the linear stabilizer output voltage.

Goal. The main goal of the research presented in this article is to develop a model of functional parameter degradation that takes into account changes in maximum amplitudes of various types of noise in order to increase the accuracy of individual forecasting and the potential period of the device operation.

Results. A generalized model of the electromagnetic parameter changes of the radio-electronic systems with two nonstationary random components characterizing various types of noise is presented. A software implementation of the presented model successfully verified on experimental data.

Practical significance. The extended model of the functional parameter changes in radio-electronic systems can be used both in individual forecasting by extrapolation, and in the development of systems with a long period of operation, as well as devices intended for autonomous use. The prospects of using the presented model to simulate changes in functional parameters and determine the possibilities of compensating these changes are shown on the example of a frequency synthesizer with an automatic output power control system.

Pages: 89-99
For citation

Stolyarov I.I. Dynamic model of the functional parameter degradation changes in radio-electronic systems with two non-stationary random components corresponding to two types of noise. Radiotekhnika. 2024. V. 88. № 6. P. 89−99. DOI: https://doi.org/10.18127/j00338486-202406-12 (In Russian)

References
  1. Shunkov V.E., Kus' O.N., Prokop'ev V.Ju., Nazarenko A.E., Butuzov V.A., Bocharov Ju.I. Shematicheskie metody obespechenija stojkosti istochnikov opornogo naprjazhenija k polnoj pogloshhennoj doze izluchenija. Trudy nauchno-issledovatel'skogo instituta sistemnyh issledovanij Rossijskoj akademii nauk. 2017. T. 7. № 2. S. 97–101 (in Russian).
  2. Starostin E.A., Moskovskih M.S., Dvirnyj V.V., Lebedev A.P. Zashhita vysokotehnologichnyh ustrojstv ot jekstremal'nyh vneshnih vozdejstvujushhih faktorov. Reshetnevskie chtenija. 2018. T. 1. S. 172–174 (in Russian).
  3. Iofin A.A., Bokov A.S. Konstruktivnye puti povyshenija nadezhnosti bortovyh radiojelektronnyh sistem. Trudy mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». 2022. T. 1. S. 44–49 (in Russian).
  4. Jakushevich A.S., Bogatyrev Ju.V., Vasilenkov N.A., Lastovskij S.B., Grabchikov S.S., Protopopov G.A., Kozjukov A.E. Jeffektivnost' primenenija specializirovannyh metallicheskih korpusov dlja zashhity radiojelektronnyh komponentov ot vozdejstvija protonov radiacionnyh pojasov zemli. Materialy 14-j Mezhdunar. konf. «Vzaimodejstvie izluchenij s tverdym telom». 2021. S. 114–118 (in Russian).
  5. Marc F., Mongellaz B., Bestory C., Levi H., Danto Y. Improvement of aging simulation of electronic circuits using behavioral modeling. IEEE Transactions on device and materials reliability. 2006. V. 6. № 2. P. 228–234.
  6. Haritonov I.A. Rasshirenie vozmozhnostej SPICE-podobnyh programm za schet ucheta jeffektov starenija v MOP shemah, obuslovlennyh jeffektami gorjachih nositelej, proboja dijelektrika i jelektromigracii. Problemy razrabotki perspektivnyh mikro- i nanojelektronnyh sistem (MJeS). 2021. № 4. S. 73–80 (in Russian).
  7. Wier B.R., Green K., Kim J., Zweidinger D.T., Cressler J.D. A physics-based circuit aging model for mixed-mode degradation in SiGe HBTs. IEEE Transactions on electron devices. 2016. V. 63, № 8. P. 2987–2993.
  8. Jin G., Matthews D. Reliability demonstration for long-life products based on degradation testing and a Wiener process model. IEEE Transactions on Reliability. 2014 Vol. 63, No. 3. P. 781–797.
  9. Chetvertakova E.S., Chimitova E.V. Proverka znachimosti sluchajnogo jeffekta dlja vinerovskoj degradacionnoj modeli. Sistemy analiza i obrabotki dannyh. 2021. № 3(83). S. 129–142 (in Russian).
  10. Podmaster'ev K.V., Moiseev S.A. Prognozirujushhij kontrol' radiojelektronnoj apparatury s adaptivnymi intervalami vremeni. Ch. 1. Teoreticheskie osnovy i modeli, harakteristiki drejfa parametrov. Fundamental'nye i prikladnye problemy tehniki i tehnologii. 2012. № 3–2 (293). S. 135–144 (in Russian).
  11. Bykov A.P., Piganov M.N. Prognozirovanie pokazatelej kachestva bortovyh radiojelektronnyh ustrojstv. Trudy MAI. 2021. № 116. S. 5–23 (in Russian).
  12. Jakimov V.L. Planirovanie operacij informacionno-telemetricheskogo obespechenija upravlenija kosmicheskimi apparatami s vysokim urovnem avtonomnosti na osnove nelinejnyh modelej izmenenija parametrov bortovoj apparatury. Trudy Voenno-kosmicheskoj akademii imeni A.F.Mozhajskogo. 2019. № 667. S. 141–151 (in Russian.
  13. Voloshina M.K., Tereshkova A.S., Shnejderov E.N., Borovikov S.M. Analiz rezul'tatov ispytanij stabilizatorov naprjazhenija na dlitel'nuju narabotku. Materialy 13-j Mezhdunar. molodezhnoj nauch.-tehnich. konf. «Sovremennye problemy radiojelektroniki i telekommunikacij» (RT-2017). 2017. 242 s. (in Russian).
  14. Re V., Manghisoni M., Ratti L., Speziali V., Traversi G. Impact of lateral isolation oxides on radiation induced noise degradation in CMOS technologies in the 100-nm regime. IEEE Transactions on nuclear science. 2007. V. 54, № 6. P. 2218–2226.
  15. Ratti L., Gaioni L., Manghisoni M., Traversi G., Pantano D. Investigating degradation mechanisms in 130 nm and 90 nm commercial CMOS technologies under extreme radiation conditions. IEEE Transactions on nuclear science. 2008. V. 55. № 4. P. 1992–2000.
  16. Borisov B.D. Modeli spektral'noj plotnosti moshhnosti flikker-shumov. Avtomatika i programmnaja inzhenerija. 2015. № 2(12). S. 78–82 (in Russian).
  17. Rezchikov, S. E. Komp'juternaja programma cifrovoj generacii flikker-shuma. Fundamental'nye problemy radiojelektronnogo priborostroenija. 2018. T. 18, № 4. S. 1113–1115 (in Russian).
  18. Kachanov B.O., Ahmedova S.A., Tuktarev N.A., Novikov V.A. Modelirovanie flikker-shuma metodom superpozicii normal'nyh stacionarnyh processov. Giroskopija i navigacija. 2018. T. 26, № 2 (101). S. 59–76 (in Russian).
  19. Klimenko I.D., Ivanov V.Je. Spektral'nyj analiz shumovoj modeli Baka-Sneppena. Informacionnye tehnologii XXI veka: cbornik nauchnyh trudov. Habarovsk: Tihookeanskij gosudarstvennyj universitet. 2015. S. 79–87 (in Russian).
  20. Karbainov A.A., Ivanov V.Je. Issledovanie kratnomasshtabnoj modeli flikker-shuma. Informacionnye tehnologii XXI veka: cbornik nauchnyh trudov. Habarovsk: Tihookeanskij gosudarstvennyj universitet. 2015. S. 65–71 (in Russian).
  21. Stolyarov I.I. Imitacionnoe modelirovanie vozdejstvija odinochnyh jeffektov obratimogo haraktera na parametry raboty sintezatora chastoty s avtomaticheskoj regulirovkoj moshhnosti. Radionavigacija i vremja. 2023. № 12 (20). S. 100–108 (in Russian).
  22. Jagannathan S., Loveless T.D., Zhang E.X., Fleetwood D.M., Schrimpf R.D., Haeffner T.D., Kauppila J.S., Mahatme N., Bhuva B.L., Alles M.L., Holman W.T., Witulski A.F., Massengill L.W. Sensitivity of high-frequency RF circuits to total ionizing dose degradation. IEEE Transactions on Nuclear Science. 2013. V. 60, № 6. P. 4498–4504.
  23. Zanchi A., Samori C., Levantino S., Lacaita A.L. A 2-V 2.5-GHz-104-dBc/Hz at 100 kHz fully integrated VCO with wide-band low-noise automatic amplitude control loop. IEEE Journal of Solid-State Circuits. 2001. V. 36. № 4. P. 611–619.
  24.  Astahov N.V., Bashkirova A.V., Makarov O.Ju., Demihova A.S. Problema radiacionnoj ustojchivosti podporogovyh opornyh shem dlja kosmicheskoj radiojelektroniki. Radiotehnika. 2022. T. 86. № 7. S. 10–13. DOI: https://doi.org/10.18127/j00338486-202207-02 (in Russian).
  25. Piganov M.N. Individual'noe prognozirovanie pokazatelej kachestva jelementov i komponentov mikrosborok. M.: Novye tehnologii. 2002. 266 s. (in Russian).
Date of receipt: 12.02.2024
Approved after review: 20.02.2024
Accepted for publication: 30.04.2024