350 rub
Journal Radioengineering №5 for 2024 г.
Article in number:
Iterative interference cancel in a channel and estimation of its parameters for the OFDM-systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202405-17
UDC: 621.391.82
Authors:

I.S. Bagaev1, A.A. L’vov2, V.P. Meshchanov3, K.A. Sayapin4, M.A. Svetlov5, A.D. Khoroshenin6

1,2,6 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

2-4 Nika-Microwave, Ltd. (Saratov, Russia)

5 Institute of Precision Mechanics and Control of RAS (Saratov, Russia)

1 ig.bagaew@yandex.ru; 2 alvova@mail.ru; 3 nika373@bk.ru; 4 sayapin.k.a@mail.ru; 5 svetlovms@yandex.ru; 6 khoroshenin@saject.ru

 

Abstract:

In mobile reception, the reliability of orthogonal frequency division multiplexing (OFDM) is limited due to time-varying channel characteristics. This causes inter-channel interference (ICI) and increases the errors in tracking data transmitted over the channel. In this work, ICIs are simulated based on the study of the amplitudes’ derivatives of the signals in the channel. This made it possible to design a relatively simple receiver circuit that iteratively canceles the ICI. The structure of the proposed device noise reduction is aimed at ensuring maximum signal/(noise+ICI) at the input of the detector. A new method for estimating channel parameters is also proposed and it is shown that it provides reliable mobile reception in important practical situations that occur during the organization of terrestrial digital broadcasting DVB-T2. A large number of model experiments for a receiver with one or two antennas show that a small number of successive iterations of ICI suppression and proposed channel parameter estimation provide reliable reception at vehicle speeds above 100 km/h.

 

Pages: 144-162
For citation

Bagaev I.S., L’vov A.A., Meshchanov V.P., Sayapin K.A., Svetlov M.A., Khoroshenin A.D. Iterative interference cancel in a channel and estimation of its parameters for the OFDM systems. Radiotekhnika. 2024. V. 88. № 5. P. 144−162. DOI: https://doi.org/10.18127/j00338486-202405-17 (In Russian)

References
  1. Bingham J.A.C. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Trans. on Communications. 1990. V. 28. № 5. P. 5–14.
  2. Li Y., Winters J.H., Sollenberger N.R. MIMO-OFDM for Wireless Communications, Signal Detection with Enhanced Channel Estimation. IEEE Trans. on Communications. 2002. V. 50. № 9. P. 1471-1477.
  3. Иванов Ю.А., Невструев И.А. Структура и помехоустойчивость систем беспроводного доступа с OFDM. Электротехнические и информационные комплексы и системы. 2009. № 3. Т. 5. С. 25-29.
  4. Koffman I., Roman V. Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16. IEEE Communication Magazine. 2002. V. 40. № 4. P. 96–103.
  5. Barhumi I., Leus G., Moonen M. Optimal Training Design for MIMO–OFDM Systems in Mo-bile Wireless Channels. IEEE Trans. on Signal Processing. 2003. V. 51. № 6. P. 1615–1624.
  6. Petrov A.V. Slepye metody ocenki parametrov signalov v cifrovyh sistemah peredachi informacii. Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata tehnicheskih nauk. SPb: LJeTI. 2016. 18 s. (in Russian).
  7. L’vov A.A., Svetlov M.S., Martynov P.V. Improvement of information reliability of digital systems with QAM/COFDM modulation. Proc. of the 20th IMEKO TC4 Int. Symp. Research on Electrical and Electronic Measurement for the Economic Upturn. – Benevento, Italy: University of Sannio. 2014. P. 478-482.
  8. Weinstein S., Ebert P. Data transmission by frequency-division multiplexing using the discrete Fourier trans-form. IEEE Trans. on Communications. 1971. V. 19. № 5. P. 628-634.
  9. Engels M. Wireless OFDM Systems: How to Make Them Work? Kluwer Academic Publishers. 2002. 197 p.
  10. Kim D., Stuber G.L. Residual ISI Cancellation for OFDM with Applications to HDTV. IEEE J. on Selected Areas in Communications. 1998. Iss. 16(8). P. 1590-1599.
  11. Viterbo E., Fazel K. How to combat long echoes in OFDM transmission schemes: Subchannel equalization or more powerful channel coding. Proc. of GLOBECOM’95. Singapore. 1995. P. 2069–2074.
  12. L'vov A.A., Svetlov M.S., Martynov P.V. Povyshenie informacionnoj nadezhnosti cifrovyh sistem s QAM/COFDM moduljaciej. Izvestija Saratovskogo universiteta. Novaja serija. Ser. Matematika. Mehanika. Informatika. 2014. T. 14. Vyp. 4. Ch. 1. S. 473-482 (in Russian).
  13. L'vov A.A., Svetlov M.S., Martynov P.V. Samosinhronizacija v informacionnyh kanalah s pomehami bol'shoj intensivnosti. Radiotehnika. 2015. № 7. S. 18-21 (in Russian).
  14. L'vov A.A., Svetlov M.S., Klenov D.V., Svetlova M.K. Povyshenie pomehoustojchivosti nedvoichnyh informacionnyh kanalov s pomehami bol'shoj intensivnosti. Radiotehnika. 2017. № 7. S. 136-139 (in Russian).
  15. Lin J.-C. Least-square channel estimation for mobile OFDM communication on time-varying frequency selective fading channels. IEEE Transactions on Vehicle Technology. 2008. V. 57. № 6. P. 3538–3550.
  16. Li Y., Cimini L.J., Sollenberger N.R. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Communications. 1998. V. 46. № 7. P. 902–915.
  17. Van de Beek J.-J., Edfors O., Sandell M., Wilson S.K., Börjesson P.O. On channel estimation in OFDM systems. Proc. of the IEEE Vehicle Technology Conf. Chicago. USA. 1995. P. 815–819.
  18. Song W.-G., Lim J.-T. Channel estimation and signal detection for MIMO-OFDM with time varying channels. IEEE Communication Letters. 2006. V. 10. № 7. P. 540–542.
  19. Li C., Roy S. Subspace based blind channel estimation for OFDM by exploiting virtual carrier. Proc. of the IEEE Global Telecommunications Conf. (GLOBECOM ’01). San Antonio. USA. 2001. V. 1. P. 295–299.
  20. Zhou S., Giannakis G.B. Finite-alphabet based channel estimation for OFDM and related multicarrier systems. IEEE Trans. on Communications. 2001. V. 49. № 8. P. 1402–1414.
  21. Moutchkaev A.S., Kong S.-H., L’vov A.A. Parameter estimation of superimposed sinusoids by data matrix subfactorization: theory and algorithm. Proc. of the 2016 Int. Conf. on Actual Problems of Electron Devices Engineering (APEDE 2016). Saratov. Russia. 2016. V. 2. P. 442-447.
  22. Moutchkaev A.S., Kong S.-H., L’vov A.A. Parameter estimation of superimposed sinusoids by data matrix subfactorization: analysis and results. Proc. of the 2016 Int. Conf. on Actual Problems of Electron Devices Engineering (APEDE 2016). Saratov. Russia. 2016. V. 2. P. 448-455.
  23. Mignone V., Morello A., Visintin M. An advanced algorithm for improving DVB-T coverage in SFN. Proc. of the Int. Broadcasting Convention. Amsterdam. Netherlands. 1997. P. 534–540.
  24. Zhao Y., Haggman S.-G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans. on Communications. 2001. V. 49. № 7. P. 1185–1191.
  25. Serrano D.G. Combined Time, Frequency and Space Diversity in Multimedia Mobile Broadcasting Systems. PhD Thesis. Valencia:
    Departamento de Comunicaciones Universitat Politecnica de Valencia. 2012. 155 p.
  26. Espineira R., Stare E. Performance improvements for 8k mobile DVB-T with improved channel estimation and MRC-based antenna
    diversity reception taking into account ICI effects. Proc. of the Int. Broadcasting Convention. Amsterdam. Netherlands. 2001.
    P. 328-336.
  27. L'vov A.A., Kiselev V.V. Chislennoe modelirovanie i analiz vozdejstvija iskazhenij na OFDM/QAM-signal. Izvestija Saratovskogo universiteta. Novaja serija. Ser. Matematika. Mehanika. Informatika. 2013. T. 13. Vyp. 3. S. 102-108 (in Russian).
  28. Jeon W.G., Chan K.H., Cho Y.S. An equalization technique for OFDM systems in time-variant multipath channels. IEEE Transactions on Communications. 1999. V. 47. № 1. P. 27–32.
  29. Gorokhov A., Linnartz J. Robust OFDM receivers for dispersive time varying channels: Equalization and channel estimation. Proc. of the Int. Conf. on Communications. New York. USA. 2002. V. 1. P. 470–474.
  30. Fan T., Wu H., Chongqing H.H. Channel Estimation and Interference Cancellation for OFDM Systems Based on Total Least Squares Solution. J. of Communications. 2011. V. 6. № 8. P. 640-647.
  31. Kim Y.H., Song I., Kim H.G., Chang T., Kim H.M. Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels. IEEE Trans. on Vehicular Technology. 1999. V. 48. № 5. P. 1610–1615.
  32. Burow R., Fazel K., Hoeher P., Klank O., Kussmann H., Pogrzeba P., Robertson P., Rul M. J. On the performance of the DVB-T system in mobile environments. Proc. of the IEEE GLOBECOM. Sydney. Australia. 1998. V. 4. P. 2198–2204.
  33. Hutter A.A., Hasholzner E., Hammerschmidt J.S. Channel estimation for mobile OFDM systems. Proc. of the IEEE Vehicular Technology Conf. Houston. USA. 1999. V. 1. P. 19–22.
  34. Chen C.-W., Wei S.-W. Channel Estimation for OFDM Systems with Asymmetric Pilot Symbols. IEEE Communications Society subject matter experts for publication in the WCNC 2010 proceedings. 2010. P. 2428-2437.
  35. Linnartz J., Gorokhov A. Doppler-resistant OFDM receivers for mobile multimedia communications. Proc. of the 2nd Int. Symp. on Mobile Multimedia System Applications. London. UK. 2000. P. 87–92.
  36. Edfors O., Sandell M., van de Beek J.-J., Wilson S.K., Börjesson P.O. OFDM channel estimation by singular value decomposition. Proc. of the IEEE Vehicular Technology Conf. Atlanta. USA. 1996. V. 2. P. 923–927.
  37. L'vov A.A., Semenov K.V. Metod kalibrovki avtomaticheskoj mnogozondovoj izmeritel'noj linii. Izmeritel'naja tehnika. 1999. № 4.
    S. 34-36 (in Russian).
  38. L'vov A.A., Seranova A.A., Ermakov R.V., Muchkaev A.S. Sravnenie metodov ocenivanija parametrov kvazigarmonicheskih signalov. Radiotehnika. 2019. № 8(2). S. 88-95. DOI: 10.18127/j00338486-201908(12)-14 (in Russian).
  39. Jakes W.C. Microwave Mobile Communications. Picataway. NJ: IEEE Press. 1994. 642 p.
  40. Cho Y.S., Kim J., Yang W.Y., Kang C.G. MIMO-OFDM Wireless Communications with Matlab. J. Wiley & Sons (Asia) Pte. Ltd., 2010. 457 p.
  41. Varanasi M., Aazhang B. Multistage detection in asynchronous code-division multiple-access communications. IEEE Trans. on Communications. 1990. V. 38. № 4. P. 509–519.
  42. Benvenuto N., Tomasin S. Block iterative DFE for single carrier modulation. Electronic Letters. 2002. V. 38. № 19. P. 1144–1145.
  43. Tomasin S. Frequency-Domain Equalization and Channel Estimation for Broadband Wireless Communications. Ph.D. dissertation. Padova, Italy: University of Padova. 2002. 92 p.
  44. Digital Video Broadcasting (DVB); Implementation guidelines for DVB terrestrial services; Transmission aspects. European Telecommunication Standards Institute. (ETSI), Sophia-Antipolis Cedex. France. 2011. 87 p.
  45. Cavers J.K. An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans. on Vehicular Technology. 1991. V. 49. № 4. P. 686–692.
  46. Khoshnevis H. Pilot Signature Based Detection of DVB-T2 Broadcasting Signal for Cognitive Radio. Proc. of the 3-d Int. Conf. on the Network of the Future. Cammarth. Tunisia. 2012. P. 1-5. DOI: 10.1109/NOF.2012.6464011.
  47. Zettas S., Lazaridis P.I., Zaharis Z.D., Kasampalis S., Cosmas J. A pilot aided averaging channel estimator for DVB-T2. Proc. of 2013 IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting (BMSB). West London. UK. 2013. P. 1-8.
    DOI: 10.1109/BMSB.2013.6621712.
  48. Ghazi-Maghrebi1 S., Hashemi-Rafsanjani S.H. Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation. AUT J. of Electrical Engineering. 2018. Iss. 50(2). P. 23-28. DOI: 10.22060/eej.2018.13944.5199.
  49. Fan T., Huang S., Gu S. An Improved Joint Channel Estimation of Wireless Communication. Int. Cong. of Information and Communication Technology (ICICT 2017). Procedia Computer Science. 2017. Is. 107. P. 533–538. DOI: 10.1016/j.procs.2017.03.106.
  50. Wu H.-C., Wu Y. A new ICI matrices estimation scheme using Hadamard sequences for OFDM systems. IEEE Trans. on Broadcasting. 2005. V. 51. № 3. P. 305–314.
  51. Edfors O., Sandell M., van de Beek J., Wilson S.K., Börjesson P.O. OFDM channel estimation by singular value decomposition. IEEE Trans. on Communications. 1998. V. 46. № 7. P. 931–939.
  52. Yang B., Cao Z., Letaief K.B. Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems. IEEE Trans. on Communications. 2001. V. 49. № 11. P. 1977–1987.
  53. Hogan J.A., Lakey J.D. Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Springer Science + Business Media. LLC 2012. 257 p.
  54. ETSI EN 302 755 Vl.2.1 (2010-10) Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2). Sophia Antipolis Cedex. FRANCE: ETSI. 2010. 177 p.
  55. Jokela T., Tupala M., Paavola J. Analysis of Physical Layer Signaling Transmission in DVB-T2 Systems. IEEE Trans. on Broadcasting. 2010. V. 56. № 3. P. 410-417.
  56. Eizmendi I., Velez M., Gomez-Barquero D., Morgade J., Baena-Lecuyer V., Slimani M., Zoellner J. DVB-T2: The Second Generation of Terrestrial Digital Video Broadcasting System. IEEE Trans. on Broadcasting. 2014. V. 60. Iss. 2. P. 258–271.
    DOI: 10.1109/TBC.2014.2312811.
  57. L’vov A.A., Klenov D.V., Svеtlоv M.S., Dolinina O.N., Sytnik A.A. Increasing of information reliability of digital communication channels under conditions of high intensity noise. Proc. X Int. Sci. & Tech. Conf. Dynamics of Systems, Mechanisms and Machines (Dynamics). Omsk: Omsk State Technical University. 2016. IEEE Catalog Number: CFP16RAB-CDR. DOI: 10.1109/Dynamics.2016.7819025.
  58. Svetlov M.S., L'vov A.A., Klenov D.V., Sytnik A.A., Dolinina O.N., Svetlova M.K. Information channel synthesis for remote test monitoring. Proc. 2018 Int. Conf. on Actual Problems of Electron Devices Engineering (APEDE 2018). Saratov. Russia. 2018. V. 1. P. 101-104.

 

Date of receipt: 25.03.2024
Approved after review: 02.04.2024
Accepted for publication: 29.04.2024