350 rub
Journal Radioengineering №5 for 2024 г.
Article in number:
Investigation of the polarization difference of the EM wave of an airborne EW system in the mode of coherent interference
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202405-12
UDC: 623.626
Authors:

S.V. Haralgin1

1 JSC “CNIRTI named after academician A.I. Berg” (Moscow, Russia)

1 post@cnirti.ru

Abstract:

Problem statement. Coherent interference generated from two or more points makes it possible to change the amplitude-phase distribution of the emitted wave. The effect of such interference on monopulse direction finders, which are widely used in weapon control radars, leads to abnormal coordinate determination errors. In some cases, combined jamming methods, the detection of such a jammer is a difficult task. The implementation of a set of measures to protect our own weapon control radars from electronic jamming is a critically important task. It is important to study the errors that occur and to form signs based on which it is possible to select sources of coherent interference.

Goal. Evaluation of errors occurring in a monopulse direction finding system and investigation of polarization difference arising from the formation of coherent interference.

Results. An assessment of the effect of coherent interference on the direction finding system has been carried out. Based on the calculation, a conclusion was made about the occurrence of an angular direction finding error, which in the range of 2-7 GHz exceeds the accuracy of modern radars. An electrodynamic simulation of the field in the far zone was carried out with radiation of the EA–18G Growler in the microwave CAD. The analysis of the influence of airframe elements on the distribution of the directional pattern is carried out. An assessment of polarization difference in the formation of coherent interference by AN/ALQ-99 aircraft stations has been carried out. It was concluded that there were significant differences in polarization characteristics within two beamwidths for AN/ALQ–99F jammers.

Practical significance. Electronic protection against coherent interference generated by an electronic warfare aircraft station is possible on the basis of polarization selection.

Pages: 100-113
For citation

Haralgin S.V. Investigation of the polarization difference of the EM wave of an airborne EW system in the mode of coherent interference. Radiotekhnika. 2024. V. 88. № 5. P. 100−113. DOI: https://doi.org/10.18127/j00338486-202405-12 (In Russian)

References
  1. Mihajlov R.L. Radiojelektronnaja bor'ba v Vooruzhennyh silah SShA: voenno-teoreticheskij trud. SPb: Naukoemkie tehnologii. 2018. 131 s. (in Russian).
  2. Garin E.N., Osipov A.S., Gladyshev A.B. i dr. Voenno-tehnicheskaja podgotovka. Voenno-tehnicheskie osnovy postroenija sredstv i kompleksov radiojelektronnogo podavlenija: Uchebnik. Pod nauch. red. E.N. Garina. Izd. 2-e, pererab. i dop. Krasnojarsk: Sib. feder. un-t. 2021. 478 c. (in Russian).
  3. Soner O. Increasing Combat Aircraft Survivability Through Coherent Self-Protection Jammers. 2008. Theses and Dissertations. 2774. https://scholar.afit.edu/etd/2774.
  4. Kaljabin E.V., Kornev V.V., Kovalev A.P. Modelirovanie sistemy radiojelektronnoj bor'by pri postanovke kogerentnyh pomeh. Radiotehnika. 2021. T. 85. № 12. S. 52-67. DOI: https://doi.org/10.18127/j00338486-202112-04 (in Russian).
  5. Adamy D. EW 101: A First Course in Electronic Warfare. Artech. 2001.
  6. Leonov A.I., Fomichev K.I. Monoimpul'snaja radiolokacija. M.: Sovetskoe radio. 1970. 392 s. (in Russian).
  7. Kuprijanov A.I., Shustov L.N. Radiojelektronnaja bor'ba. Osnovy teorii. Izd. 3-e. M.: Vuzovskaja kniga. 2017. 800 s. (in Russian).
  8. Vakin S.A., Shustov L.N. Osnovy radioprotivodejstvija i radiotehnicheskoj razvedki. M.: Sovetskoe radio. 1968. 448 s. (in Russian).
  9. Ustrojstva SVCh i antenny. Proektirovanie fazirovannyh antennyh reshetok: Ucheb. posobie dlja vuzov. Pod red. D.I. Voskresenskogo. Izd. 4-e, pererab. i dop. M.: Radiotehnika. 2012. 744 s. (in Russian).
  10. Spravochnik po radiolokacii. Pod red. M.I. Skolnika. Per. s angl. pod obshhej red. V.S. Verby. V 2 kn. Kn. 1. M.: Tehnosfera. 2015. 672 s. (in Russian).
  11. Cifrovye dvojniki. Monografija. Pod red. P.A. Sozinova. M.: Radiotehnika. 2022. 312 s. (in Russian).
  12. Vozhdaev V.V., Teperin L.L. Harakteristiki radiolokacionnoj zametnosti letatel'nyh apparatov. M.: FIZMATLIT. 2018. 376 s. (in Russian).
  13. Tatarinov V.N., Tatarinov S.V, Ligthart L.P. Vvedenie v sovremennuju teoriju poljarizacii radiolokacionnyh signalov. T. 1. Poljarizacija ploskih jelektromagnitnyh voln i ee preobrazovanija. Tomsk: Izd-vo Tomskogo un-ta. 2012. 380 s. (in Russian).
  14. Gromov V.A. Poljarizacionnye iskazhenija signalov bokovogo izluchenija nazemnoj RLS X-diapazona pri prieme na kosmicheskom apparate. Doklady Tomskogo gos. un-ta sistem upravlenija i radiojelektroniki. 2013. № 2(28). S. 14-20 (in Russian).
  15. Gorbunov Ju.N., Timoshenko P.I. Stohasticheskaja radiolokacija. Osnovy teorii i raschetov. Pod red. prof. Ju.N. Gorbunova. M.: Gorjachaja linija – Telekom. 2023. 464 s. (in Russian).
  16. Mirtalibov T.A., Haralgin S.V., Kolesnikov N.P., Hlopov B.V. Metod poljarizacionnoj selekcii istochnikov radioizluchenija na fone imitacionnyh pomeh v fazovoj pelengacionnoj sisteme. Radiotehnika. 2021. T. 85. № 12. S.42-51. DOI: https://doi.org/10.18127/j00338486-202112-03 (in Russian).
Date of receipt: 10.04.2024
Approved after review: 15.04.2024
Accepted for publication: 29.04.2024