V.K. Kurbanaliev1, M.V. Fesenko2, Yu.N. Gorbunov3
1-3 JSC “CNIRTI named after academician A.I. Berg” (Moscow, Russia)
1-3 post@cnirti.ru
Problem statement. Recognition of types of modulation of radio signals is an important task solved in radio engineering systems for various purposes. In radio monitoring tools, information about the type of modulation is used to identify unauthorized sources of radio emission and measure their parameters, in electronic warfare systems - when choosing a more effective type of interference, etc. The article substantiates the relevance of improving methods for recognizing digital types of modulation. It is shown that mixed cumulants of higher orders can be used as modulation features for recognizing types of modulation. Analytical expressions are given for calculating mixed cumulants up to the tenth order inclusive through the values of mixed moments and the value of mixed cumulants for radio signals with the most common types of digital modulation. Recommendations have been developed for the synthesis of algorithms for recognizing the type of modulation based on cumulant analysis.
Goal. Obtain mathematical expressions for calculating mixed cumulants up to the tenth order inclusive and determine the values of mixed cumulants to recognize the most common digital types of modulation.
Results. A general methodology has been developed for the synthesis of algorithms for recognizing the type of modulation based on cumulant analysis.
Practical significance. Application of the developed approach in the design of radio-electronic systems makes it possible to obtain a high probability of correct recognition of digital types of modulation with a relatively low design complexity.
Kurbanaliev V.K., Fesenko M.V., Gorbunov Yu.N. Using cumulant analysis to recognize digital types of radio signal. Radiotekhnika. 2024. V. 88. № 5. P. 38−48. DOI: https://doi.org/10.18127/j00338486-202405-04 (In Russian)
- Rembovskij A.M., Ashihmin A.V., Koz'min V.A. Radiomonitoring: zadachi, metody, sredstva. Pod red. A.M. Rembovskogo. Izd. 3-e, pererab. i dop. M: Gorjachaja linija – Telekom. 2012. 640 s. (in Russian).
- Azzouz E.E., Nandi A.K. Automatic Modulation Recognition of Communication Signals. Kluwer Academic Publishers. 1996 (in Russian).
- Zhu Z., Nandi K. Automatic modulation classification principles, algorithms and applications. JohnWiley & Son. London. 194 p.
- Kurbanaliev V.K., Gorbunov Ju.N. Avtomaticheskoe raspoznavanie vidov moduljacii: kumuljantnyj podhod. Vestnik RAEN. 2023. № 1 (in Russian).
- Adzhemov S.S., Klenov N.V., Tereshonok M.V., Chirov D.S. Metody raspoznavanija vidov cifrovoj moduljacii signalov v kognitivnyh radiosistemah. Vestnik Moskovskogo universiteta. Ser. 3. Fizika. Astronomija. 2015. № 6. S. 19-27 (in Russian).
- Steiner M.P. Spectrum Sensing and Blind Automatic Modulation Classification in Real Time. Master of science in electrical and computer engineering. Blacksburg. Virginia. 2011. 75 p.
- Dobre O., Abdi A., Bar-Ness Y., Su W. A Survey of Automatic Modulation Classification Techniques: Classical Approaches and New Trends. IEEE Proceedings on Communications. 2006.
- Zhang L. Research on modulation recognition algorithm based on high-order cumulant. Journal of Information Engineering University. 2017. V. 18. № 4. Р. 403-408. DOI: 10.3969/j.issn.1671-0673.2017.04.005.
- Velampalli C. Hierarchical blind modulation classification in the presence of carrier frequency offset. Master’s Thesis. Communications Research Center. 2010. P. 1-39.
- Thakur P., Madan S., Madan M. Trends in automatic modulation classification for advanced datacommunication networks. International journal of advanced research in computer engineering & technology. 2015. V. 4. 12 p.
- Lee J.H., Kim J., Kim B., Yoon D., Choi J.W. Robust automatic modulation classification technique for fading channels via deep neural network. Entropy. 2017. № 19. Р. 454.
- Kurbanaliev V.K. Kumuljantnye priznaki dlja opredelenija tipa manipuljacii signalov. RJeNSIT. 2020. № 12(3). S. 331–340. DOI: 10.17725/rensit.2020.12.331 (in Russian).
- Aved'jan Je.D., Dam V.N. K vyboru kumuljantnyh priznakov v zadache raspoznavanija vidov cifrovoj moduljacii radiosignalov. Informatizacija i svjaz'. 2015. № 4. R. 11-15 (in Russian).
- Dam Van N'it'. Nejrosetevye tehnologii v zadache avtomaticheskogo raspoznavanija vidov cifrovoj moduljacii: Avtoref. diss. M.: MFTI. 2018. 159 s. (in Russian).
- Smith A., Evans M., Downey J. Modulation classification of satellite communication signals usingcumulants and neural networks. Cognitive Communications for Aerospace Applications Workshop. 2017. 8 p.
- Young A.F. Classification of digital modulation types in multipath environments. Master’s Thesis. Naval Postgraduate School. Monterey. CA 93943-5000. California. June 2008. P. 1-65.
- Proakis J.G., Masoud Salehi. Digital communications. McGraw-Hill Education. 5th ed. 2007.
- Leonov V.P., Shirjaev A.N. K tehnike vychislenija seminvariantov. Teorija verojatnosti i ee primenenie. 1959. T. 4. Vyp. 3. S. 342–355 (in Russian).
- Malahov A.N. Kumuljantnyj analiz sluchajnyh negaussovyh processov i ih preobrazovanij. M.: Sovetskoe radio. 1978. 376 s. (in Russian).
- Kendall M. Dzh., St'juart A. Teorija raspredelenij. M.: Nauka. 1966. 587 s. (in Russian).