350 rub
Journal Radioengineering №4 for 2024 г.
Article in number:
Investigation of ion beams of the gridless ion sources with floating and anode potential of the discharge chamber rear wall
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202404-16
UDC: 53.087.47
Authors:

D.S. Manegin1, V.D. Sokolov2, S.O. Shilov3, E.V. Vorobev4, O.P. Plotnikova5, S.G. Ivakhnenko6

1-6 SEC «Ion Plasma Technologies», BMSTU (Moscow, Russia)

1 manegin@bmstu.ru; 2 sokolovvd@bmstu.ru; 3 s.shilov@bmstu.ru; 4 evv@bmstu.ru; 5 plotnikova@bmstu.ru; 6 ivakhnenko@bmstu.ru

Abstract:

Gridless or End-Hall ion sources are widespread in the processes of thin-film technology as means of ion cleaning, sputtering and assisting. In world practice, two different design schemes of such sources are used: in one scheme, the rear wall of the discharge chamber is under floating potential, in the other – under anode potential. At the same time, a detailed comparison of the operation features and the achieved parameters, such as ion current value and its angular distribution, were not previously carried out for these schemes. Thus, the main purpose of this work was identification of the operation features of End-Hall ion sources made according to two different design schemes.

Studies of End-Hall ion sources beams were carried out by the Faraday flat probe with a guard ring. The probe was mounted on the rotating support with the rotation center on the outlet section of the ion source. Also, using a Faraday probe with the collector turned parallel to the beam, the angular distribution of the current of thermal (also named “slow”) ions was obtained.

Ion sources of three sizes with maximum discharge currents 5 A, 10 A and 15 A were made according to the design schemes with floating and with the anode potential of the discharge chamber rear wall, altogether six devices. The working gas for tests was argon. The angular distributions of the ion current on the probe were obtained with various values of the discharge current, the magnetic flux density and the working gas flow. A comparison of the results was carried out for both studied structural schemes of End-Hall ion sources.

During the research, it was found that on average the ion current values for the End-Hall ion sources with the anode potential of the discharge chamber rear wall are significantly lower than for the sources with a floating rear wall, with comparable operating parameters. At the same time, with a decrease in the working gas flow rate, an increase in the magnetic flux density and an increase in the discharge current, it is possible to achieve comparable voltages and ion currents. It has practical importance, since it allows to reduce the working gas consumption and the load on the pumping system.

This work was carried out with the support of the Ministry of Education and Science of the Russian Federation in subsidy from the state task No. 075-03-2023-095/8 dated August 10, 2023.

Pages: 158-167
For citation

Manegin D.S., Sokolov V.D., Shilov S.O., Vorobev E.V., Plotnikova O.P., Ivakhnenko S.G. Investigation of ion beams of the gridless ion sources with floating and anode potential of the discharge chamber rear wall. Radiotekhnika. 2024. V. 88. № 4. P. 158−167. DOI: https://doi.org/10.18127/j00338486-202404-16 (In Russian)

References
  1. Sharapov V.M., Zalavutdinov R.K., Zimin A.M., Krivitsky S.E., Serushkin S.V., Kulikauskas V.S. Effect of deuterium on thin-film formation during tungsten sputtering in magnetron discharge deuterium plasma. Journal of Surface Investigation: X-Ray, Synchrothron and Neutron Techniques. 2015. V. 9. № 4. P. 673-678. DOI: 10.1134/S1027451015040187.
  2. Tumanov N.A., Kirillov D.V., Vorob’ev E.V. Investigation of a high-frequency magnetron sputtering system operation modes during copper thin films deposition. Journal of Physics: Conference Series. IOP Publishing. 2022. V. 2270. №. 1. Р. 012055.
  3. Duhopel'nikov D.V., Vorob'ev E.V., Ivahnenko S.G. Upravlenie ionnymi potokami v hollovskih uskoriteljah. Vestnik Moskovskogo aviacionnogo instituta. 2017. T. 24. № 2. S. 24-30 (in Russian).
  4. Ensinger W. Ion sources for ion beam assisted thin film deposition. Review of Scientific Instruments.1992. V. 63., № 11.
    P. 5217-5233. DOI: 10.1063/1.1143432.
  5. Pawlewicz W.T., Culver T.R., Chiello M.W., Zachistal J.H., Walters S.R., Allen D.A. Low-energy high-flux reactive ion assisted deposition of oxide optical coatings: performance, durability, stability and scalability. Optical Thin Films IV: New Developments. Proceedings SPIE. 1994. V. 2262. P. 2-13. DOI: 10.1117/12.185776.
  6. Gajnutdinov I.S., Murav'ev E.A., Malafeev I.D., Hasanov A.M., Kol'cov A.Ju. Povyshenie stabil'nosti spektral'noj granicy propuskanija UF-fil'tra pri nanesenii plenok oksida gafnija s ispol'zovaniem ionnogo assistirovanija. Vestnik KGTU im. A.N. Tupoleva. 2019. № 1. S. 5-9 (in Russian).
  7. Kaufman H.R., Harper J.M.E. Ion doses for low-energy ion-assist applications. Journal of Vacuum Science & Technology A. 2004. V. 22. № 1. P. 221-224. DOI: 10.1116/1.1633565.
  8. Zhurin V.V. Industrial Ion Sources: Broadbeam Gridless Ion Source Technology. Weinheim: Wiley-VCH2012. 312 р.
  9. Niederwald H., Mahoney L. Next generation end hall ion source in the optical thin film production process. Advances in Optical Thin Films III. 2008. DOI: 10.1117/12.797596.
  10. Kahn J.R., Kaufman H.R. Low-Energy Ion-Beam Etching. Society of Vacuum Coaters. 49th Annual technical Conference Proceedings. 2005. 4 p.
  11. Sainty W.G. Ion Source. United States Patent. US 6,849,854 B2.2005.
  12. Tokarev A.S., Lapshina O.A., Kozyrev A.A. Influence of ion cleaning of front facet of 9xx nm InGaAs/AlGaAs/GaAs diode lasers on their maximal output power. Semiconductors. 2023. V. 57. № 1. P. 54-57. DOI: 10.21883/SC.2023.01.55621.3952.
  13. Golosov D.A., Zavadskij S.M., Mel'nikov S.N., Xiubo Tian, Okodzhi D.Je., Kolos V.V. Ionnyj istochnik na osnove torcevogo hollovskogo uskoritelja dlja predvaritel'noj «mjagkoj» ochistki podlozhek. Materialy IV Mezhdunar. nauch. konf. «Problemy vzaimodejstvija izluchenija s veshhestvom». V 2-h chastjah. Ch. 2. Gomel': GGU im. F. Skoriny. 2016. S. 35-39 (in Russian).
  14. XNY Vacuum (oficial'nyj sajt). URL: http://www.cdxnyzk.com/product/42/ (data obrashhenija 06.02.2024).
  15. Hanil Vacuum Co., Ltd (oficial'nyj sajt). URL: http://eng.vacuum-coater.com/wp/?page_id=4507 (data obrashhenija 06.02.2024).
  16. Optorun (oficial'nyj sajt). URL: https://www.optorun.co.jp/en/products/ion/ois_gl.html (data obrashhenija 06.02.2024).
  17. Univac (oficial'nyj sajt). URL: http://www.univac.co.kr/eng/sub02/07_01.php (data obrashhenija 06.02.2024).
  18. Manegin D.S., Sokolov V.D., Shilov S.O., Vorob'ev E.V., Serushkin S.V., Ivahnenko S.G. Issledovanie parametrov raboty bessetochnyh ionnyh istochnikov. Inzhenernyj zhurnal: nauka i innovacii. 2023. № 12. DOI: 10.18698/2308-6033-2023-12-2322 (in Russian).
  19. Dukhopelnikov D.V., Riazanov V.A., Shilov S.O., Manegin D.S., Sokolov R.A. Investigation of the laboratory model of a thruster with anode layer operating with air and nitrogen-oxygen mixture. AIP Conference Proceedings. XLIV Academic Space Conference: Dedicated to the Memory of Academician S.P. Korolev and other Outstanding Russian Scientists. Pioneers of Space Exploration. 2021. V. 2318. DOI: 10.1063/5.0036251.
  20. Bankovskij A.S., Zaharov A.A., Potapov A.A., Shvachko A.A. Vlijanie prostranstvennogo zarjada v gazorazrjadnoj plazme na ustojchivost' balansa chastic i tokovuju sostavljajushhuju naprjazhennosti jelektricheskogo polja. Radiotehnika. 2020. T. 84. № 7(14). S. 50-58. DOI: 10.18127/j00338486-202007(14)-07 (in Russian).
  21. Willey R.R., Fortenberry K., Green C. Comparison of the behavior of three different ion/plasma sources for optical coating processes using a direct current power supply. 64th Annual Technical Conference Proceedings. 2021. 4 p. DOI: 10.14332/svc21.proc.0041.
  22. Henderson H. Development of advanced polymeric reflector for CSP applications-final report. Abengoa Solar-Lakewood, CO. 2013. №. DOE-GO18036-1.
  23. Kozlov O.V. Jelektricheskij zond v plazme. M.: Atomizdat. 1969. 291 s. (in Russian).
Date of receipt: 06.02.2024
Approved after review: 12.02.2024
Accepted for publication: 29.03.2024