350 rub
Journal Radioengineering №4 for 2024 г.
Article in number:
Medium frequency monocone antenna
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-2024-15
UDC: 621.396.673
Authors:

V.S. Panko1, A.G. Andreev2, A.A. Erokhin3, A.A. Senchenko4, A.V. Stankovsky5, N.V. Filenkova6, R.G. Batrutdinov7, S.B. Nelipa8, A.V. Kosolapov9

1-5 Siberian Federal University (Krasnoyarsk, Russia)

6,7 JSC “INTRUM” (Krasnoyarsk, Russia)

8,9 JSC «NPP «Radiosviaz» (Krasnoyarsk, Russia)

1 vpanko@sfu-kras.ru; 2 aandreyev@sfu-kras.ru; 3 aerokhin@sfu-kras.ru; 4 asenchenko@sfu-kras.ru; 5 stankovskiy_a@mail.ru; 6,7 rnd@intrum.pro; 8 sb.nelipa@yandex.ru; 9 dwl@mail.ru

Abstract:

Terrestrial radio navigation systems keep playing a significant role in radio navigation due to high noise and jam immunity in comparison to global navigation satellite systems. Signals with a relative bandwidth of 30% or more are used in radio navigation of the medium wave range. To avoid navigation signal frequency distortions, the base station antenna must be matched with the output of the transmitter over entire operating bandwidth. An acceptable level of matching can be estimated as VSWR ≤ 2.

The most common type of medium wave antennas is a vertical monopole with a ground metal screen. The height of the antenna is 22 m or 0.14 λ at the central frequency. This value is limited by the technical capabilities of manufacturing, transportation and deployment. The input impedance of such antennas has a small active and large reactive component, which does not allow good matching even when using matching circuits.

It is promising to use conical wideband monopoles. The antenna is formed of a set of verticals - inclined conductors connected at the bottom of the antenna, and ground screen. In the authors’ previous work, the main parameters of the antenna were determined, ensuring VSWR < 2 in the frequency band of 30% or more: 16 verticals, 16 ground screen conductors, the carrier rim height 22 m, carrier rim diameter 28 m, mast height 26 m, ground screen radius 14 m.

A significant effect of the feeding unit design was revealed. To ensure the required bandwidth, the feeding port must be located strictly along the antenna axis and connected directly to all verticals and ground screen conductors.

The mechanical design of the antenna was carried out and antenna was fabricated and mounted. It is implemented as a spatial cable structure and does not require heavy equipment for the deployment. The antenna mast is assembled of triangular truss separate sections and fixed with guy ropes. The mast is mounted on insulators and equipped with a lightning rod. The verticals are made of steel cable and are stretched between the upper fiberglass support rim and the lower support ring. The support rim is made up of separate straight segments and is held on the mast by a stretch system. In the lower of the mast verticals are fixed through insulators on the support ring and connected to the junction box with balun and transition to a coaxial feeder line.

The measured VSWR and input impedance are in good coincide with the simulation results. VSWR ≤ 2 is reached in the range of 1.61-2.49 MHz, which fits to the navigational signal bandwidth.

Pages: 149-157
For citation

Panko V.S., Andreev A.G., Erokhin A.A., Senchenko A.A., Stankovsky A.V., Filenkov N.V., Batrutdinov R.G., Nelipa S.B., Kosolapov A.V. Medium frequency monocone antenna. Radiotekhnika. 2024. V. 88. № 4. P. 149−157. DOI: https://doi.org/10.18127/j00338486-202404-15 (In Russian)

References
  1. Pravila po oborudovaniju morskih sudov Rossijskogo morskogo registra sudohodstva. Ch. V. Navigacionnoe oboru-dovanie. ND № 2-020101-127. SPb. 2020 (in Russian).
  2. Bondarenko. V.N., Kokorin V.I. Shirokopolosnye radionavigacionnye sistemy s shumopodobnymi chastotno-manipuliro-vannymi signalami. Novosibirsk: Nauka. 2011. 257 s. (in Russian).
  3. Belocerkovskij G.B. Osnovy radiotehniki i antenny. Ch. 2. Antenny. M.: Sovetskoe radio. 1969. 328 s. (in Russian).
  4. Bankov S.E., Gribanov A.N., Kurushin A.A. Jelektrodinamicheskoe modelirovanie antennyh i SVCh-struktur s ispol'zovaniem FEKO. M.: Solon-Press. 2020. 412 s. (in Russian).
  5. Davis W. Alan, Agarwal Krishna. Radio Frequency Circuit Design. New York: A Wiley-Interscience Publication. 2001. 322 р. https://doi.org/10.1002/0471200689.
  6. Mattej D.L., Jang L., Dzhons M.T. Fil'try SVCh, soglasujushhie cepi i cepi svjazi. T. 1.: Per. s angl. M.: Svjaz'. 1971. 439 s. (in Russian).
  7. Kai Chang (Editor-in-Chief). Wiley encyclopedia of RF and microwave engineering. 6 Volume Set. New York: A Wiley Interscience Publication. 2005. 5949 c. https://doi.org/10.1002/0471654507.
  8. Afanasyev P.O., Mayorov A.P., Sledkov V.A. Low-profile miniature antennas with vertical polarization. Antenny. No. 2 (153). 2010. P. 62-67.
  9. Ajzenberg G.Z., Belousov S.P., Zhurbenko Je.M., Kliger G.A., Kurashov A.G. Korotkovolnovye antenny. Pod. red. G.Z. Ajzenberga. M.: Radio i svjaz'. 1985. 536 s. (in Russian).
  10. Agarkov N.E. Proektirovanie peredajushhih malogabaritnyh shtyrevyh antenn KV-diapazona v sisteme «antenna – so-glasujushhee ustrojstvo». Tehnika radiosvjazi. 2022. Vyp. 1(53). S. 30-43. https://doi.org/10.33286/2075-8693-2022-52-30-43 (in Russian).
  11. Zhang X.L., Gao H.T., Zhang Q.C. An optimum design of low-profile ultra-wideband HF skeletal wire duoconical monopole antenna with parasitic grounded poles. 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE. 2016. С. 264-267. https://doi.org/10.1109/APWC.2016.7738173.
  12. Yu Yu Kyi, Li Jianying. Broadband small-size wire cone antenna. Microwave and Optical Technology Letters. 2009. V. 51. № 9.
    Р. 2040-2043. https://doi.org/10.1002/MOP.24583.
  13. Gandomi M. H., Zarifi D. Design and development of ultra-wideband 3-D monopole antennas based on supercurves. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 12. Р. 8214-8220. https://doi.org/10.1109/TAP.2021.3090832.
  14. Wang Q., Ruan C., He Q. Study on the broadband properties of a wire conical monopole antenna. ICMMT 4th International Conference on Microwave and Millimeter Wave Technology. 2004. P. 43-45. https://doi.org/10.1109/ICMMT.2004.1411455.
  15. Keum K., Choi J. An ultra-wideband 3-stage monocone antenna with top-hat loading. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE. 2020. Р. 469-470.
  16. Pan'ko V.S., Salomatov Ju.P., Baskova A.A. Optimizacija formy antenny v vide konicheskogo monopolja. Sovremennye problemy radiojelektroniki: materialy HHIII Vseros. nauch.-tehn. konf. s mezhdunar. uchastiem, posvjashh. 127-j godovshhine Dnja radio. Otv. red. F.V. Zander. Krasnojarsk: Sib. feder. un-t. 2022. S. 274-279 (in Russian).
Date of receipt: 17.11.2023
Approved after review: 21.11.2023
Accepted for publication: 29.3.2024