V.V. Mukhin1, S.L. Ivanov2, D.N. Gofman3
1 JSC Ural Design Bureau “Detail” (Kamensk-Uralsky, Russia)
2,3 MESC “Zhukovsky – Gagarin Air Force Academy” (Voronezh, Russia)
1 upkb.nio.100.140@mail.ru; 2 st.iv.84@mail.ru; 3 gofmandenisn94@mail.ru
Problem statement. In the process of aiming an aircraft at a target under the influence of a large number of factors, its deviation from a given kinematic trajectory is possible. In this case, it is necessary to ensure the transfer of the aircraft in the minimum time to the required parametric state. Goal. Development and evaluation of the characteristics of an optimal algorithm for trajectory control of an aircraft that minimizes the transition time to the required state while limiting the amount of available lateral acceleration. Results. In accordance with the Pontryagin maximum principle, an algorithm for trajectory control of an aircraft has been developed that is optimal according to the criterion of the minimum time for testing its deviation from the required kinematic trajectory. Analytical expressions are obtained for the control signal, its switching time points, switching function, as well as controlled phase coordinates without taking into account the inertia of the aircraft guidance contour and changes in the radial parameters of the relative movement of the target. In the interest of increasing the visibility of the algorithm, the direct guidance of the aircraft to a remote stationary target in one plane is considered. A comparative analysis of the effectiveness of aircraft guidance using the proposed and well-known optimized trajectory control algorithm is carried out. The directions of further research are formulated. Practical significance. The simulation results allow us to conclude that it is expedient to use trajectory forced control of the aircraft with restrictions on the magnitude of the control signal to minimize the time of working out the required phase coordinates.
Mukhin V.V., Ivanov S.L., Gofman D.N. Trajectory forced control of the aircraft. Radiotekhnika. 2024. V. 88. № 4. P. 133−141.
DOI: https://doi.org/10.18127/j00338486-202404-13 (In Russian)
- Merkulov V.I., Lepin V.N. Aviacionnye sistemy radioupravlenija. Ch.1. Teoreticheskie osnovy sinteza i analiza aviacionnyh sistem radioupravlenija. M.: Radio i svjaz'. 1996. 390 s. (in Russian).
- Aviacionnye sistemy radioupravlenija: uchebnik dlja voennyh i grazhdanskih VUZov i nauchno-issledovatel'skih organizacij / Pod red. V.I. Merkulova. M.: Izd. VVIA im. prof. N.E. Zhukovskogo. 2008. 423 s. (in Russian).
- Sejdzh Je.P., Uajt Ch.S. Optimal'noe upravlenie sistemami: Per. s angl. Pod red. B.R. Levina. M.: Radio i svjaz'. 1982. 392 s. (in Russian).
- Aviacionnye sistemy radioupravlenija. T. 1. Principy postroenija sistem radioupravlenija. Osnovy sinteza i analiza. Pod red. A.I. Kanashhenkova i V.I. Merkulova. M.: Radiotehnika. 2003. 192 s. (in Russian).
- Aviacionnye sistemy radioupravlenija. T. 2. Radiojelektronnye sistemy samonavedenija. Pod red. A.I. Kanashhenkova i V.I. Merkulova. M.: Radiotehnika. 2003. 392 s. (in Russian).
- Buhalev V.A. Osnovy avtomatiki i teorii upravlenija: Uchebnik dlja slushatelej i kursantov vuzov VVS. M.: Izd. VVIA im. prof. N.E. Zhukovskogo. 2006. 406 s. (in Russian).
- Levin B.R., Shvarc V. Verojatnostnye modeli i metody v sistemah svjazi i upravlenija. M.: Radio i svjaz'. 1985. 312 s. (in Russian).
- Fel'dbaum A.A. Osnovy teorii optimal'nyh avtomaticheskih sistem. M.: Fizmatgiz. 1963. 522 s. (in Russian).
- Piskunov N.S. Differencial'noe i integral'noe ischislenija: Uchebnik dlja vtuzov. M.: Nauka. 1976. 576 s. (in Russian).
- Maksimov M.V., Gorgonov G.I. Radiojelektronnye sistemy samonavedenija. M.: Radio i svjaz'. 1982. 300 s. (in Russian).
- Aviacionnye sistemy radiovidenija: Monografija / Pod red. G.S. Kondratenkova. M.: Radiotehnika. 2015. 648 s. (in Russian).
- Verba B.C., Kapustin S.G., Merkulov V.I., Kharkov V.P. Optimization of radioelectronic control systems. Part 2. Applied methods and algorithms of the theory of optimal control // Information measuring and control systems. 2013. №. 3. S. 3-18 (in Russian).