350 rub
Journal Radioengineering №4 for 2024 г.
Article in number:
About high-speed performance of adaptive space processing against the background of the correlated hindrances
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202404-12
UDC: 621.396.669
Authors:

B.M. Vovshin1, A.A. Pushkov2, M.S. Vinogradov3

1,2 JSC NPO “Almaz” (Moscow, Russia)

3 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 boris@eleron.net; 2 minipooh@yandex.ru; 3 VinogradovMS@mai.ru

Abstract:

The question of compensation of the correlated hindrances created by independent sources of Gaussian noise radiations, dot on space, in radar station from phased array antenna is relevant problem of modern radar-location. The masking action of such noises complicates detection of desired signals and as a result extraction from them useful information. Due to the aprioristic uncertainty in the directions of arrival and intensity of noises for selection of a desired signal on their background adaptive space processing is used. For this purpose, in phased array antenna it is selected the compensation channels protecting the target channel. At the same time in practice of a radar-location are widespread simple in implementation, but self-balancing potentiometers, insufficiently effective regarding high-speed performance, with correlation feedback couplings. The modern adaptive methods of compensation recommended by the theory, which are based on direct estimation of correlation matrix of noises and its address in this or that look. In comparison with a gradient algorithm the self-balancing potentiometer this procedure is significantly more difficult in implementation. Therefore, comparison of speed of these options in identical conditions is represented important theoretical problem of the direct adaptation connected with justification of mode(method) in modern perspective radar stations from phased array antenna.

The considered(examined) two algorithms of adaptive spatial processing comparison of their speed (convergence speed) is also carried out to radar with phased array antenna. In the first option the gradient algorithm realized by the correlation self-balancing potentiometers (SBP) is used. The second works at the basis of the current estimation of the complete correlation matrix (CCM) of the hindrance and definition as it the return, and its implementation the adaptive trellised filter (ATF) is. Shortcomings and advantages of the compared options in terms of their high-speed performance, which is understood as the necessary volume of the training selection at which power losses and losses of coefficient of suppression do not exceed admissible, are defined and explained. The method of mathematical modeling quantitatively showed advantages of high-speed performance of the second option in process of increase in number of sources of the hindrance.

Pages: 121-132
For citation

Vovshin B.M., Pushkov A.A., Vinogradov M.S. About high-speed performance of adaptive space processing against the background
of the correlated hindrances. Radiotekhnika. 2024. V. 88. № 4. P. 121−132. DOI: https://doi.org/10.18127/j00338486-202404-12
(In Russian)

References
  1. Radiojelektronnye sistemy. Osnovy postroenija i teorija: Spravochnik. Pod. red Ja.D. Shirmana. M: Radiotehnika. 2007. 512 s. (in Russian).
  2. Zhuravlev A.K., Hlebnikov V.A., Rodimov A.P. i dr. Adaptivnye radiotehnicheskie sistemy s antennymi reshetkami. L: Izd-vo Leningradskogo universiteta. 1986; 1991. 544 s. (in Russian).
  3. Mozingo R.A., Miller T.U. Adaptivnye antennye reshetki: Vvedenie v teoriju: Per. s angl. M.: Radio i svjaz'. 1986. 448 s. (in Russian).
  4. Widrow B., Stearns S.D. Adaptive noise cancelling: principals and applications. Proc. IEEE. 1975. V. 63. № 12. Р. 1692-1716.
  5. Abramovich Ju.I. K analizu jeffektivnosti adaptivnyh algoritmov, ispol'zujushhih korreljacionnye obratnye svjazi. Radiotehnika i jelektronika. 1979. T. 24. S. 302-318 (in Russian).
  6. Lehovickij D.I., Rakov I.D. Jeffektivnost' prostranstvennoj obrabotki signalov pri vremennoj korreljacii obuchajushhej vyborki. Radiojelektronika. 1986. № 9. S. 60-63 (in Russian).
  7. Vinogradov M.S., Nelin I.V., Sverdlov B.G. Analiz jeffektivnosti algoritmov adaptivnoj obrabotki v radiolokacionnyh sistemah pri vozdejstvii kombinirovannyh pomeh. Tezisy 20-j Mezhdunar. konf. «Aviacija i kosmonavtika» (Moskva, 22-26 nojabrja 2021 g.). M.: Izd-vo «Pero». 2021. S. 302-303 (in Russian).
  8. Read I.S., Brennan J.D. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems. 1974.
    V. AES–10. № 6. Р. 853-863.
  9. Lehovickij D.I. Obobshhennyj algoritm Levinsona i universal'nye reshetchatye fil'try. Izvestija vuzov. Ser. Radiofizika. 1992. T. 35. № 9. S. 790-808 (in Russian).
  10. Vovshin B.M., Korneev A.N. Postroenie i svojstva optimal'nyh sistem mezhperiodnoj obrabotki kogerentnyh radiolokacionnyh signalov na fone gaussovskih passivnyh pomeh. Vestnik vozdushno-kosmicheskoj oborony. 2021. № 4(32). S. 33-44 (in Russian).
  11. Ermolaev V.T., Semenov V.Ju., Flaksman A.G. Metody obnaruzhenija celej v avtomobil'nom radare v uslovijah vozdejstvija aktivnyh pomeh. Radiotehnika. 2023. T. 87. № 1. S. 73-87. DOI: 10.18127/j00338486-202301-07 (in Russian).
  12. Dzhigan V.I. Antennaja reshetka s chastichnoj adaptaciej na osnove rekursivnyh algoritmov po kriteriju naimen'shih kvadratov v arifmetike dejstvitel'nyh chisel. Radiotehnika. 2023. T. 87. № 1. S. 144-157. DOI: 10.18127/j00338486-202301-11 (in Russian).
  13. Dzhigan V.I. Osobennosti adaptivnoj obrabotki signalov v kol'cevyh antennyh reshetkah. Radiotehnika. 2023. T. 87. № 7. S. 115-126. DOI: 10.18127/j00338486-202307-12 (in Russian).
Date of receipt: 04.12.2023
Approved after review: 11.12.2023
Accepted for publication: 29.03.2024