E.V. Kuzmin1
1 Siberian Federal University (Krasnoyarsk, Russia)
1 ekuzmin@sfu-kras.ru
Formulation of the problem. Binary phase shift keyed (BPSK) spread spectrum signals, including their traditional and modern modifications – based on meander modulation of generating pseudorandom sequence chips (BOC-signals) – are widely used in the practice of information-measuring systems. While having clear potential advantages in the target quality indicator (signals time delay estimation accuracy), modern spread spectrum BOC-signals are not free from a number of disadvantages, the main ones being the multi-peak nature of the autocorrelation function and the increased level of spectral side lobes. Eliminating these shortcomings, while maintaining time delay estimation accuracy that is better than traditional BPSK-signals, is of both scientific and practical interest.
Target. Present a new format of spread spectrum signals generated by a pseudorandom video signals based on up-chips – elementary pulses in the form of a finite atomic function up(t ) instead of traditional rectangular and modern meander chips, quantify the properties and advantages of up-chips, and also give an example of a new spread spectrum up-binary phase shift keyed signal (BPSK-up), witch is the successful “inheritance” of the beneficial properties from the up-chip.
Results. Based on a up(t ) finite atomic function, a pseudorandom up-video signal is constructed, formed by alternating partial up-chips, which is the basis for the synthesis of new spread spectrum signals. The properties of the up-chip were studied and a comparative analysis was carried out with a rectangular chip and a meander chip. The significant advantages of the up-chip are shown, namely: the shorter length of the base of the autocorrelation function and, importantly, its single-peak nature; record low level of spectrum side lobes (among those considered); leading indicators of the energy distribution coefficient in the spectrum; increased potential for latency estimation accuracy (compared to using a rectangular chip). Using a constructed pseudorandom up-video signal, a new spread spectrum BPSK-up-signal (BPSK-up) is proposed. Its temporal implementation, autocorrelation function and spectrum are presented – the successful “inheritance” of the listed beneficial properties from the generating up-chip and demonstrated.
Practical significance. The pseudorandom up-video signal and the new spread spectrum BPSK-up-signal generated. They has advantageous in spectral domain and in correlation properties. Also, they are provide a number of advantages over traditional and modern modifications of spread spectrum signals, and allow to recommend them for practical use in information-measurement systems, and also in radio electronic systems where the compactness of the autocorrelation function and its single-peak nature, as well as the low level of side lobes of the spectrum, are simultaneously important.
Kuzmin E.V. New spread spectrum signals based on up(t) atomic function. Radiotekhnika. 2024. V. 88. № 4. P. 102−111.
DOI: https://doi.org/10.18127/j00338486-202404-10 (In Russian)
- Ortega L., Medina D., Vilà-Valls J., Vincent F., Chaumette E. Positioning performance limits of GNSS meta-signals and HO-BOC signals. Sensors. 2020. V. 20. Iss. 12. DOI: 10.3390/s20123586.
- Jarlykov M.S. Optimal'nye i kvazioptimal'nye algoritmy priema i obrabotki BOC-signalov v perspektivnyh global'nyh navigacionnyh sputnikovyh sistemah. Radiotehnika i jelektronika. 2021. T. 66. № 1. S. 39–61. DOI: 10.31857/S0033849421010101 (in Russian).
- Tian Z., Cui X., Liu G., Zhu Y., Lu M. A low-processing-rate dual BPSK tracking method for BOC modulated signals. IEEE Communications letters. 2021. V. 25. № 7. P. 2366–2369. DOI: 10.1109/LCOMM.2021.3072073.
- Jarlykov M.S. Optimal'nyj i kvazioptimal'nyj priem BOC-signalov na osnove algoritmov s pereprisvoeniem v perspektivnyh global'nyh navigacionnyh sputnikovyh sistemah. Radiotehnika i jelektronika. 2022. T. 67. № 5. S. 454–484. DOI: 10.31857/S003384942204012X (in Russian).
- Interfejsnyj kontrol'nyj dokument GLONASS (5.1-ja redakcija). M. 2008 (in Russian).
- European GNSS (GALILEO) open service signal-in-space interface control document. Iss. 2.0. Jan. 2021.
- NAVSTAR GPS space segment/navigation user interfaces. IS-GPS-200 Rev. N. 22 Aug. 2022.
- GLONASS. Principy postroenija i funkcionirovanija. Pod red. A.I. Perova, V.N. Harisova. M.: Radiotehnika. 2010. 800 s. (in Russian).
- Jarlykov M.S. Meandrovye shumopodobnye signaly (BOC-signaly) v novyh sputnikovyh radionavigacionnyh sistemah. Radiotehnika. 2007. № 8. S. 3–12 (in Russian).
- Jarlykov M.S., Jarlykova S.M. Korreljacionnye funkcii AltBOC-signalov perspektivnyh sputnikovyh radionavigacionnyh sistem. Novosti navigacii. 2013. № 4. S. 19–35 (in Russian).
- Rvachev V.L., Rvachev V.A. Teorija priblizhenij i atomarnye funkcii. M.: Znanie. 1978. 64 s. (in Russian).
- Kravchenko V.F. Lekcii po teorii atomarnyh funkcij i nekotorym ih prilozhenijam. Monografija. M.: Radiotehnika. 2003. 512 s. (in Russian).
- Erofeenko V.T., Kravchenko V.F. Konstruirovanie vremennyh signalov jeksponencial'no zatuhajushhimi atomarnymi funkcijami. Fizicheskie osnovy priborostroenija. 2020. T. 9. № 4. S. 30–37. DOI: 10.25210/jfop-2004-030037 (in Russian).
- Nandini D., Yadav J., Rani A., Singh V., Kravchenko O.V., Rathee N. Improved patient-independent seizure detection using hybrid feature extraction approach with atomic function-based wavelets. Iranian journal of science and technology, Transactions of electrical engineering. 2023. V. 47. P. 1667–1688. DOI: 10.1007/s40998-023-00644-3.
- García-Rios E., Escamilla-Hernández E., Pérez-Meana H.M., Ramos-Velasco L.E., Pérez-Bautista M., Kravchenko O.V. Analysis of a multi-biometric face recognition system using wavelet up(x). Publicación semestral pädi. 2022. V. 10. № Especial 4. P. 190–195. DOI: https://doi.org/10.29057/icbi.v10iEspecial4.9284.
- Kravchenko V.F., Kravchenko O.V. Konstruktivnye metody algebry logiki, atomarnyh funkcij, vejvletov, fraktalov v zadachah fiziki i tehniki. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 696 s. (in Russian).
- Kravchenko V.F., Churikov D.V. Cifrovaja obrabotka signalov atomarnymi funkcijami i vejvletami. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 182 s. (in Russian).
- Budunova K.A., Kravchenko V.F. Matematicheskie metody sinteza chastotno-izbiratel'nyh fil'trov. Fizicheskie osnovy priborostroenija. 2022. T. 11. № 1(43). S. 2–21. DOI: 10.25210/jfop 2102-002021 (in Russian).
- Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981. 416 s. (in Russian).