350 rub
Journal Radioengineering №4 for 2024 г.
Article in number:
New spread spectrum signals based on up(t) atomic function
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202404-10
UDC: 621.396
Authors:

E.V. Kuzmin1

1 Siberian Federal University (Krasnoyarsk, Russia)

1 ekuzmin@sfu-kras.ru

Abstract:

Formulation of the problem. Binary phase shift keyed (BPSK) spread spectrum signals, including their traditional and modern modifications – based on meander modulation of generating pseudorandom sequence chips (BOC-signals) – are widely used in the practice of information-measuring systems. While having clear potential advantages in the target quality indicator (signals time delay estimation accuracy), modern spread spectrum BOC-signals are not free from a number of disadvantages, the main ones being the multi-peak nature of the autocorrelation function and the increased level of spectral side lobes. Eliminating these shortcomings, while maintaining time delay estimation accuracy that is better than traditional BPSK-signals, is of both scientific and practical interest.

Target. Present a new format of spread spectrum signals generated by a pseudorandom video signals based on up-chips – elementary pulses in the form of a finite atomic function up() instead of traditional rectangular and modern meander chips, quantify the properties and advantages of up-chips, and also give an example of a new spread spectrum up-binary phase shift keyed signal (BPSK-up), witch is the successful “inheritance” of the beneficial properties from the up-chip.

Results. Based on a up() finite atomic function, a pseudorandom up-video signal is constructed, formed by alternating partial up-chips, which is the basis for the synthesis of new spread spectrum signals. The properties of the up-chip were studied and a comparative analysis was carried out with a rectangular chip and a meander chip. The significant advantages of the up-chip are shown, namely: the shorter length of the base of the autocorrelation function and, importantly, its single-peak nature; record low level of spectrum side lobes (among those considered); leading indicators of the energy distribution coefficient in the spectrum; increased potential for latency estimation accuracy (compared to using a rectangular chip). Using a constructed pseudorandom up-video signal, a new spread spectrum BPSK-up-signal (BPSK-up) is proposed. Its temporal implementation, autocorrelation function and spectrum are presented – the successful “inheritance” of the listed beneficial properties from the generating up-chip and demonstrated.

Practical significance. The pseudorandom up-video signal and the new spread spectrum BPSK-up-signal generated. They has advantageous in spectral domain and in correlation properties. Also, they are provide a number of advantages over traditional and modern modifications of spread spectrum signals, and allow to recommend them for practical use in information-measurement systems, and also in radio electronic systems where the compactness of the autocorrelation function and its single-peak nature, as well as the low level of side lobes of the spectrum, are simultaneously important.

Pages: 102-111
For citation

Kuzmin E.V. New spread spectrum signals based on up(t) atomic function. Radiotekhnika. 2024. V. 88. № 4. P. 102−111.
DOI: https://doi.org/10.18127/j00338486-202404-10 (In Russian)

References
  1. Ortega L., Medina D., Vilà-Valls J., Vincent F., Chaumette E. Positioning performance limits of GNSS meta-signals and HO-BOC signals. Sensors. 2020. V. 20. Iss. 12. DOI: 10.3390/s20123586.
  2. Jarlykov M.S. Optimal'nye i kvazioptimal'nye algoritmy priema i obrabotki BOC-signalov v perspektivnyh global'nyh navigacionnyh sputnikovyh sistemah. Radiotehnika i jelektronika. 2021. T. 66. № 1. S. 39–61. DOI: 10.31857/S0033849421010101 (in Russian).
  3. Tian Z., Cui X., Liu G., Zhu Y., Lu M. A low-processing-rate dual BPSK tracking method for BOC modulated signals. IEEE Communications letters. 2021. V. 25. № 7. P. 2366–2369. DOI: 10.1109/LCOMM.2021.3072073.
  4. Jarlykov M.S. Optimal'nyj i kvazioptimal'nyj priem BOC-signalov na osnove algoritmov s pereprisvoeniem v perspektivnyh global'nyh navigacionnyh sputnikovyh sistemah. Radiotehnika i jelektronika. 2022. T. 67. № 5. S. 454–484. DOI: 10.31857/S003384942204012X (in Russian).
  5. Interfejsnyj kontrol'nyj dokument GLONASS (5.1-ja redakcija). M. 2008 (in Russian).
  6. European GNSS (GALILEO) open service signal-in-space interface control document. Iss. 2.0. Jan. 2021.
  7. NAVSTAR GPS space segment/navigation user interfaces. IS-GPS-200 Rev. N. 22 Aug. 2022.
  8. GLONASS. Principy postroenija i funkcionirovanija. Pod red. A.I. Perova, V.N. Harisova. M.: Radiotehnika. 2010. 800 s. (in Russian).
  9. Jarlykov M.S. Meandrovye shumopodobnye signaly (BOC-signaly) v novyh sputnikovyh radionavigacionnyh sistemah. Radiotehnika. 2007. № 8. S. 3–12 (in Russian).
  10. Jarlykov M.S., Jarlykova S.M. Korreljacionnye funkcii AltBOC-signalov perspektivnyh sputnikovyh radionavigacionnyh sistem. Novosti navigacii. 2013. № 4. S. 19–35 (in Russian).
  11. Rvachev V.L., Rvachev V.A. Teorija priblizhenij i atomarnye funkcii. M.: Znanie. 1978. 64 s. (in Russian).
  12. Kravchenko V.F. Lekcii po teorii atomarnyh funkcij i nekotorym ih prilozhenijam. Monografija. M.: Radiotehnika. 2003. 512 s. (in Russian).
  13. Erofeenko V.T., Kravchenko V.F. Konstruirovanie vremennyh signalov jeksponencial'no zatuhajushhimi atomarnymi funkcijami. Fizicheskie osnovy priborostroenija. 2020. T. 9. № 4. S. 30–37. DOI: 10.25210/jfop-2004-030037 (in Russian).
  14. Nandini D., Yadav J., Rani A., Singh V., Kravchenko O.V., Rathee N. Improved patient-independent seizure detection using hybrid feature extraction approach with atomic function-based wavelets. Iranian journal of science and technology, Transactions of electrical engineering. 2023. V. 47. P. 1667–1688. DOI: 10.1007/s40998-023-00644-3.
  15. García-Rios E., Escamilla-Hernández E., Pérez-Meana H.M., Ramos-Velasco L.E., Pérez-Bautista M., Kravchenko O.V. Analysis of a multi-biometric face recognition system using wavelet up(x). Publicación semestral pädi. 2022. V. 10. № Especial 4. P. 190–195. DOI: https://doi.org/10.29057/icbi.v10iEspecial4.9284.
  16. Kravchenko V.F., Kravchenko O.V. Konstruktivnye metody algebry logiki, atomarnyh funkcij, vejvletov, fraktalov v zadachah fiziki i tehniki. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 696 s. (in Russian).
  17. Kravchenko V.F., Churikov D.V. Cifrovaja obrabotka signalov atomarnymi funkcijami i vejvletami. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 182 s. (in Russian).
  18. Budunova K.A., Kravchenko V.F. Matematicheskie metody sinteza chastotno-izbiratel'nyh fil'trov. Fizicheskie osnovy priborostroenija. 2022. T. 11. № 1(43). S. 2–21. DOI: 10.25210/jfop 2102-002021 (in Russian).
  19. Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981. 416 s. (in Russian).
Date of receipt: 20.12.2023
Approved after review: 17.01.2024
Accepted for publication: 29.03.2024