350 rub
Journal Radioengineering №4 for 2024 г.
Article in number:
Measurement of dynamic direction diagrams of phased antenna arrays in process of radar objects tracking
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202404-02
UDC: 621.396.67
Authors:

 B.A. Levitan1, S.A. Topchiev2, V.E. Farber3, M.V. Eisymont4

1-4 PJSC “Radiofizika” (Moscow, Russia)

1,3 Moscow Institute of Physics and Technology (National Research University) (Dolgoprudny, Russia)

1 Moscow Aviation Institute (National Research University) (Moscow, Russia)

2 topus@mail.ru; 3 vladeffar@mail.ru; 4 asymont@mail.ru 

Abstract:

The research considers issues regarding feasibility of measurement of a dynamic direction diagram (DD) of antenna systems built on the basis of phased antenna arrays (ESA) and active phased antenna arrays (AESA) in the process of radar objects automatic tracking during actual operation.

Currently known methods of DD measurement require involvement of additional aids. In particular, a dynamic DD is usually measured using a specially built monitoring and adjustment tower that houses angle reflectors and additional antennae to which a simulation signal is sent via special wave-guide paths. Measurements of a static DD in test fields are usually conducted by the fly-around method using piloted aerial vehicles, where the aerial vehicle makes a circular fly-around of ESA with the same altitude at each passage. These two methods of DD measurement can be combined using method of a virtual tower, in which a multi-rotor UAV in hovering mode is applied instead of a high-rise structure of the monitoring and adjustment tower.

Although the method of dynamic DD measurement in process of radar object automatic tracking is less accurate in comparison to application of the monitoring and adjustment tower, on the other hand it does not require involvement of additional equipment and enables conduction of operative check of radar antenna systems technical status in the course of their operation. At that, the most accurate results can be obtained in case of spherical radar objects with constant effective RCS.

The present research obtained relations to form an array of values determining DD of both receiving and transmitting antennae. Approaches to dynamic DD measurement elaborated in the present research have been tested under actual conditions in the process of radar object automatic tracking by a radar with large aperture digital AESA and showed their serviceability.

Pages: 24-33
For citation

Levitan B.A., Topchiev S.A., Farber V.E., Eisymont M.V. Measurement of dynamic direction diagrams of phased antenna arrays in process of radar objects tracking. Radiotekhnika. 2024. V. 88. № 4. P. 24−33. DOI: https://doi.org/10.18127/j00338486-202404-02
(In Russian)

References
  1. Gribanov A.N., Gavrilova S.E., Dorofeev A.E., Mosejchuk G.F., Alekseev O.S. Metod izmerenija dinamicheskih diagramm napravlennosti passivnyh i aktivnyh antennyh reshetok. Vestnik Koncerna VKO «Almaz-Antej». 2016. № 4. S. 32-40 (in Russian).
  2. Denisenko V.V., Dubrov Ju.B., Korchemkin Ju.B., Makota V.A., Nikolaev A.M., Tolkachev A.A., Shitikov A.M., Shubov A.G., Shishlov A.V. Mnogojelementnaja FAR KA-diapazona voln. Antenny. 2005. № 1. S. 7-14 (in Russian).
  3. Micmaher M.Ju., Torgovanov V.A. Bezjehovye kamery SVCh. M.: Radio i svjaz'. 1982 (in Russian).
  4. Kobel'kov G.P., Levitan B.A., Poplavskij I.V., Prusakov A.V., Solov'jov G.K., Shhekochixin S.G. Opyt ispytanij mnogofunkcional'nyh RLS millimetrovogo diapazona voln na stendah v bol'shoj bezjehovoj kamere. Radiotehnika. 2006. T. 70. № 10. S. 29-31 (in Russian).
  5. Denisenko V.V., Kozlov Ju.I, Solov'ev G.K., Tobolev A.K., Shabanov R.I., Shishlov A.V. Radioizmerenija v specializirovannyh bezjehovyh kamerah. Radiotehnika. 2008. T. 72. № 10. S. 8-15 (in Russian).
  6. Tolkachjov A.A., Shishlov A.V. Tehnologii radiolokacii. M.: Veche. 2010. 153 s. (in Russian).
  7. Klassen V.I., Prosvirkin I.A., Levitan B.A., Topchiev S.A. Razrabotka programmno-apparatnogo kompleksa dlja izmerenij diagramm napravlennosti krupnoaperturnyh antenn pri pomoshhi bespilotnogo letatel'nogo apparata i sistem GLONASS. Tezisy dokladov konf. «Inzhiniring i telekommunikacii» (En&T). 2016. S. 89-91 (in Russian).
  8. Klassen V.I., Prosvirkin I.A., Levitan B.A., Topchiev S.A. Izmerenie parametrov izluchenija krupnoaperturnyh antenn s pomoshh'ju bespilotnogo letatel'nogo apparata. Tehnologii i sredstva svjazi. 2014. № 1(100). S. 60-65 (in Russian).
  9. Baldin S.V., Gogoberidze T.O., Klassen V.I., Levitan B.A., Nikitin M.V., Prosvirkin I.A., Topchiev S.A. Metod virtual'noj vyshki dlja izmerenija diagramm napravlennosti krupnoaperturnyh fazirovannyh antennyh reshetok. Sb. trudov XH Vseros. molodezhnoj nauchn.-tehnich. konf. «Radiolokacija i svjaz' – perspektivnye tehnologii». M.: Mir nauki. 2023. S 24-29 (in Russian).
  10. Farber V.E. Osnovy traektornoj obrabotki radiolokacionnoj informacii v mnogokanal'nyh RLS: Ucheb. posobie. M.: MFTI. 2005. 160 s. (in Russian).
  11. Leonov A.I., Vasenev V.N., Gajdukov Ju.I. i dr. Modelirovanie v radiolokacii. Pod red. A.I. Leonova. M.: Sovetskoe radio. 1979. 264 s. (in Russian).
  12. Kuz'min S.Z. Osnovy proektirovanija sistem cifrovoj obrabotki radiolokacionnoj informacii. M.: Radio i svjaz'. 1986. (in Russian).
  13. Denisenko V.V., Levitan B.A., Topchiev S.A., Shitikov A.M., Shishlov A.V. Aktivnye fazirovannye antennye reshetki – sostojanie i tendencii razvitija. Zhurnal radiojelektroniki. 2023. № 1 (in Russian).
  14. Topchiev S.A., Nikitin M.V. Razrabotka v PAO «Radiofizika» RLS s cifrovymi AFAR. Sb. nauch. trudov XIII Molodezhnoj nauch.-tehnich. konf. «Radiolokacija i svjaz' – perspektivnye tehnologii». 2015. S. 7-14 (in Russian).
  15. Patent na izobretenie 2789466 S1, 03.02.1023. Sposob izmerenija harakteristik diagrammy napravlennosti cifrovoj fazirovannoj antennoj reshetki. Topchiev S.A., Farber V.E., Jejsymont M.V. Zajavka № 2022108375 ot 29.03.2022 (in Russian).
Date of receipt: 04.03.2024
Approved after review: 11.03.2024
Accepted for publication: 25.03.2024