350 rub
Journal Radioengineering №3 for 2024 г.
Article in number:
Analysis of the functional purpose of the millimeter wave mobile transmission line trombone compensator of the automatic measurement system of the field on a plane
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202403-13
UDC: 537.87
Authors:

R.A. Davtyan1, A.K. Aharonyan2, G.H. Manasaryan3, S.V. Volvenko4, V.H. Avetisyan5

1,2,5 Russian-Armenian University (Yerevan, Armenia)

2,5 Yerevan Research Institute of Communications (Yerevan, Armenia)

3 National Polytechnic University of Armenia (Yerevan, Armenia)

3,5 Yerevan Research Institute of Mathematical Machines (Yerevan, Armenia)

4,5 Peter the Great St. Petersburg Polytechnic University (Saint-Petersburg, Russia)

1 davtyan2919@gmail.com; 2 aharon.aharonyan@rau.am; 3 giga425385@mail.ru; 4 volk@cee.spbstu.ru; 5 avahan@mail.ru

Abstract:

The paper presents an analysis of the influence of the different manufacturing errors of trombone compensator units, as well as temperature changes on the transmission characteristics of the millimeter wave signal transmission mobile line, which contains that trombone compensators. The transmission mobile line is the part of the automatic measuring system that is designed for measurements on the plane in the near field of the tested millimeter wave antennas. The mentioned influence, in turn, leads to errors in determining the characteristics of the antennas in their far field. The millimeter wave signal transmission mobile line, being quasi-optical, is built on superdimentional waveguides with their movable joints and contains two waveguide mentioned trombone compensators of its length variation. During measurements they work alternately depending on the displacement of the measuring probe of the system along one or another coordinate axis. The constancy of the mobile transmission line length is achieved by simultaneous compensation of its changes in length by synchronizing the displacements of the scanning probe and the trombone compensator knee. The synchronization of their displacements is carried out by the pantograph, which must also fulfill another functional purpose - ensuring these displacements in a 2:1 ratio. The potential frequency limit of the system operation in the millimeter wave range, caused by the use of a pantograph, is estimated.

Pages: 138-152
For citation

Davtyan R.A., Aharonyan A.K., Manasaryan G.H., Volvenko S.V., Avetisyan V.H. Analysis of the functional purpose of the millimeter wave mobile transmission line trombone compensator of the automatic measurement system of the field on a plane // Radiotekhnika. 2024. V. 88. № 3. P. 138−152. DOI: https://doi.org/10.18127/j00338486-202403-13 (In Russian)

References
  1. Gerouni P.M. Avtomaticheskie izmerenija harakteristik antenn v zone raskryva. Trudy VNIIRI. Erevan. 1983. 125 s. (in Russian).
  2. Metody izmerenij parametrov izluchajushhih sistem v blizhnej zone. Pod red. L.D. Bahraha. L.: Nauka. 1985. 272 s. (in Russian).
  3. Yaghjian A.D. An overview of near-field antenna measurements. IEEE Trans. Antennas and Propagation. January 1986. V. 34.
    Р. 30-45.
  4. Slater D. Near-field antenna measurements. Boston-London. Artech House. 1991. 310 p.
  5. Avetisyan V.H. Scanner with transmission line for conventional planar antenna near-field measurements in the short millimeter waveband. IEEE Trans. on Antennas and Propagation. September 2004. V. 52. Р. 2500-2503.
  6. Avetisyan V.H. Near-field testing system for antennas operating in short millimeter waveband. IEEE Trans. on Antennas and Propagation. June 2010. V. 58. P. 2149-2153.
  7. Avetisyan V.G., Bagdasaryan A.A., Davtyan R.A. Podvizhnaja linija peredachi millimetrovyh voln dlja antennyh izmerenij po blizhnemu polju. Sbornik statej 11-j godichnoj nauch. konf. RAU. Erevan. 2016. S. 127-131 (in Russian).
  8. Makarov S.B., Davtyan R.A., Agaronyan A.K., Markosyan M.V., Avetisyan V.G., Zav'jalov S.V., Tomashevich S.V. Podvizhnaja kvaziopticheskaja linija peredachi signala v sostave skanera dlja planarnyh izmerenij polej diapazona millimetrovyh voln. Radiotehnika. 2021.
    T. 85. № 11. S. 107-116. DOI: https://doi.org/10.18127/j00338486-202111-16 (in Russian).
  9. Anur'ev V.I. Spravochnik konstruktora-mashinostroitelja. T. 1. M.: Mashinostroenie. 2001. 920 s. (in Russian).
  10. GOST 520-2002. Podshipniki kachenija (in Russian).
  11. Kazancev E.I. Promyshlennye pechi. Spravochnoe rukovodstvo dlja raschetov i proektirovanija. M.: Metallurgija. 1975. 368 s. (in
    Russian).
  12. Tihonov V.I. Statisticheskaja radiotehnika. M.: Sovetskoe radio. 1966. 678 s. (in Russian).
Date of receipt: 29.01.2024
Approved after review: 06.02.2024
Accepted for publication: 28.02.2024