350 rub
Journal Radioengineering №3 for 2024 г.
Article in number:
Experimental studies of radio modem for transmission and detection of optimal signals with controlled intersymbol interference based on eigenfunctions of band-limited kernels
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202403-11
UDC: 621.391.8
Authors:

I. Lavrenyuk1, S.B. Makarov2, A.S. Ovsyannikova3, S.V. Zavjalov4, T.Yu. Kudryashova5, V.S. Sinepol6, B.I. Polozhincev7

1-7 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

1 lavrenyuk_i@spbstu.ru; 2 makarov@cee.spbstu.ru; 3 ovsyannikova_as@spbstu.ru; 4 zavyalov_sv@spbstu.ru;
5 kudryashova_tyu@spbstu.ru; 6 sinepol@mail.spbstu.ru; 7 borisp@spbstu.ru

Abstract:

Formulation of the problem. In real data transmission systems, even for channel with additive white Gaussian noise, it is necessary to take into account the implementation aspects of the structure of the information system. These aspects include the features of packet data transmission, the construction of phase and clock synchronization. The boundary values of the communication channel efficiency are determined by Shannon's formula for throughput. Approximation to these boundary conditions will depend on the magnitude of energy losses caused by inaccuracies in the implementation of signal processing devices. This effect is especially evident in the case of using optimal signals with controlled intersymbol interference based on eigenfunctions of band-limited cores.

The goal is to determine an experimental assessment of the effect of real phase and clock synchronization on packet data transmission consisting of optimal signals with controlled intersymbol interference based on eigenfunctions of band-limited cores.

Results. It has been experimentally shown that packet message transmission formats with optimal signals leads to energy losses for channels with constant parameters. These energy losses are associated with inaccuracies in the practical implementation of phase and clock synchronization systems.

When using coherent processing algorithms with decision feedback and with the maximum likelihood estimation of subsequent symbols for fixed data rates R=1.25/T–2/T under real operating conditions of phase and clock synchronization, energy losses are equal to 1.8-1.9 dB for BER=10–3 and 2.1-2.4 dB for BER=10–4. Energy losses associated with the presence of real phase and clock synchronization increase if the signal-to-noise ratio increases more than 15 dB.

Practical significance. The effect of real phase and clock synchronization in packet data transmission consisting of optimal signals with controlled intersymbol interference based on eigenfunctions of band-limited cores is experimentally demonstrated. The results can be used in existing DVB-S2X systems, as well as to increase TV broadcasting channels, improve its quality, and provide additional services.

Pages: 111-126
References
  1. Anderson J.B., Rusek F., Öwall V. Faster-Than-Nyquist Signaling. in Proceedings of the IEEE. Aug. 2013. V. 1018. Р. 1817-1830. DOI: 10.1109/JPROC.2012.2233451.
  2. Fan J., Guo S., Zhou X., Ren Y., Li G.Y., Chen X. Faster-Than-Nyquist Signaling: An Overview. in IEEE Access. 2017. V. 5.
    Р. 1925-1940. DOI: 10.1109/ACCESS.2017.2657599.
  3. Tkachenko D.A., Batov Ju.V., Puz'ko D.A., Gel'gor A.L. Ocenka jeffektivnosti ispol'zovanija cifrovoj predkorrekcii v usiliteljah moshhnosti sputnikovyh sistem veshhanija DVB-S2/S2X. Radiotehnika. 2022. T. 86. № 12. S. 48-57. DOI: https://doi.org/10.18127/j00338486-202212-04 (in Russian).
  4. Ovsjannikova A.S., Makarov S.B., Zav'jalov S.V., Volvenko S.V. Ocenka stepeni priblizhenija informacionnoj sistemy k granicam Shennona putem ispol'zovanija optimal'nyh po kriteriju maksimal'noj koncentracii jenergii v polose chastot signalov. Radiotehnika. 2023. T. 87. № 1. S. 5-22. DOI: https://doi.org/10.18127/j00338486-202301-01 (in Russian).
  5. Makarov S.B., et al. Optimizing the Shape of Faster-Than-Nyquist (FTN) Signals with the Constraint on Energy Concentration in the Occupied Frequency Bandwidth. in IEEE Access. 2020. V. 8. Р. 130082-130093. DOI: 10.1109/ACCESS.2020.3009213.
  6. Nguen V.F., Gorlov A.I., Gel'gor A.L. Dostizhenie maksimal'noj spektral'noj jeffektivnosti putem odnovremennogo uvelichenija razmera signal'nogo sozvezdija i vvedenija upravljaemoj mezhsimvol'noj interferencii. Radiotehnika. 2018. T. 82. № 1. S. 42-48 (in Russian).
  7. Gel'gor A.L., Gel'gor T.E. Novye formy impul'sov dlja signalov s chastichnym otklikom, obespechivajushhie vyigrysh po otnosheniju k signalam faster-than-nyquist. Radiotehnika. 2018. T. 82. № 12. S. 39-48 (in Russian).
  8. Makarov S.B., et al. Optimizing the Shape of Faster-Than-Nyquist (FTN) Signals with the Constraint on Energy Concentration in the Occupied Frequency Bandwidth. in IEEE Access. 2020. V. 8. Р. 130082-130093. DOI: 10.1109/ACCESS.2020.3009213.
  9. Gel'gor A.L., Tan N.F.H. Sintez spektral'no-jeffektivnyh signalov pri nalichii ogranichenija v vide spektral'noj maski. Radiotehnika. 2018. T. 82. № 12. S. 49-57. DOI: 10.18127/j00338486-201812-06 (in Russian).
  10. Gorlov A.I., Gel'gor A.L., Nguen V.F. Ispol'zovanie optimal'nyh finitnyh impul'sov kak sposob nailuchshego vvedenija upravljaemoj mezhsimvol'noj interferencii. Radiotehnika. 2016. T. 80. № 12. S. 112-120 (in Russian).
  11. Makarov S., Zavjalov S., Ovsyannikova A., Lavrenyuk I., Xue W. Comparison of the Spectral and Energy Efficiency of FTN Signals Based on RRC Pulses and Obtained by the Optimization Method. 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (St. Petersburg, Russia). 2019. Р. 177-180. DOI: 10.1109/EExPolytech.2019.8906866.
  12. Kartashevskij V.G., Mishin D.V. Kompensacija additivnyh pomeh v posledovatel'nyh sistemah s OSR. Radiotehnika. 1997. T. 51. № 8. S. 4-9 (in Russian).
  13. Habarov E.O. Vyravnivanie s OSR v mnogoluchevom kanale s zamiranijami pri povyshennoj udel'noj skorosti moduljacii. Radiotehnika. 2006. T. 70. № 12. S. 22-29 (in Russian).
  14. Tong M., Huang X., Zhang J.A. Frame-based Decision Directed Successive Interference Cancellation for FTN Signaling. 2022 IEEE Globecom Workshops (GC Wkshps) (Rio de Janeiro, Brazil). 2022. Р. 1670-1674. DOI: 10.1109/GCWkshps56602.2022.10008577.
  15. Bedeer E., Ahmed M.H., Yanikomeroglu H. A Very Low Complexity Successive Symbol-by-Symbol Sequence Estimator for Faster-Than-Nyquist Signaling. in IEEE Access. 2017. V. 5. Р. 7414-7422. DOI: 10.1109/ACCESS.2017.2663762.
  16. Abbasi S., Bedeer E. Low Complexity Classification Approach for Faster-Than-Nyquist (FTN) Signaling Detection. in IEEE Communications Letters. March 2023. V. 27. № 3. Р. 876-880. DOI: 10.1109/LCOMM.2023.3236953.
  17. Tong M., Huang X., Zhang J.A. Faster-Than-Nyquist Transmission with Frame-by-Frame Decision-Directed Successive Interference Cancellation. in IEEE Transactions on Communications. Aug. 2023. V. 71. № 8. Р. 4851-4861. DOI: 10.1109/TCOMM.2023.3279404.
Date of receipt: 29.01.2024
Approved after review: 06.02.2024
Accepted for publication: 28.02.2024