D.V. Klimenko1, A.B. Nikitin2, A.A. Stroganov3, I.A. Tsikin4
1 Special Technological Center Ltd, (St. Petersburg, Russia)
2-4 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)
1 devklimenko@stc-spb.ru; 2 nikitin@mail.spbstu.ru; 3 stroganov.aa@edu.spbstu.ru; 4 tsikin@mail.spbstu.ru
Microwave switches are widely used in the design of transceivers for various purposes. Integrated switches are used as the main components of devices for discrete control of microwave oscillation parameters (phase shifters and attenuators). Currently, the task of improving microwave monolithic integrated circuits (MMICs) produced on the basis of domestic technologies is urgent. At the same time, more flexible production conditions provided by the so-called "foundry" - customized MMIC manufacturers increase interest in precisely such domestic technological processes. Therefore, the development of an MMIC switch topology based on domestic PDK for the 0.25 μm GaAs pHEMT technological process is an urgent task.
The designed switch in the frequency range of 7...11 GHz must have an open channel loss of less than 1.2 dB and VSWR of less than 1.3. The SPDT switch isolation between output channels must be greater than 40 dB.
To select the basic switch structure, this work examines two variants of SPDT circuits. These circuits contain two and three transistors in each switch channel. It is shown that the channel structure based on a series-parallel circuit on two transistors does not allow to achieve the required isolation values. The isolation in the high-frequency part of the range turns out to be 5 ... 6 dB less than required. Therefore, a circuit with three transistors in each switch channel was chosen as the basic structure for designing the MMIC topology. One transistor is series-connected, and two transistors are parallel-connected. Based on this structure, the SPDT switch topology was designed, and parameters of transistors and passive elements that provide the specified characteristics were determined.
As a result, the designed switch in the considered frequency band (7...11 GHz) has an open channel loss of less than 1 dB, providing an isolation between output channels of more than 50 dB and a closed channel insertion loss of more than 41 dB. In this case, the input and output VSWR of the open channel does not exceed 1.2, the value of the input power of the 0.1 dB compression point is 27.5 dBm. The MMIC sizes are 1400´1200 microns. The designed switch is comparable to the samples of foreign manufacturers in terms of its overall characteristics.
Klimenko D.V., Nikitin A.B., Stroganov A.A., Tsikin I.A. Design of monolithic microwave integrated circuit X-band switch on GaAs рНЕМТ. Radiotekhnika. 2024. V. 88. № 3. P. 92−101. DOI: https://doi.org/10.18127/j00338486-202403-09 (In Russian)
- Berezniak A., Korotkov A. Solid-state microwave switches: circuitry, manufacturing technologies and development trends. Review (Part 1). Radioelektronika. Izvestiya Vysshikh Uchebnykh Zavedenii. 2013. V. 56. № 4. P. 3–28. DOI: 10.3103/S0735272713040018.
- Berezniak A., Korotkov A. Solid-state microwave switches: circuitry, manufacturing technologies and development trends. Review (Part 2). Radioelektronika. Izvestiya Vysshikh Uchebnykh Zavedenii. 2013. V. 56. № 5. P. 3–20. DOI: 10.3103/S0735272713050014.
- Kochemasov V., Rautkin Ju. Integral'nye SVCh-perekljuchateli. Jelektronika: NTB. 2018. № 4(00175). S. 122–127. DOI: 10.22184/1992-4178.2018.175.4.122.127 (in Russian).
- Lu D., Liu J., Yu M. Highly Selective Bandpass Switch Block with Applications of MMIC SPDT Switch and Switched Filter Bank. IEEE Solid-State Circuits Letters. 2022. V. 5. P. 190–193. DOI: 10.1109/LSSC.2022.3194410.
- Wang L., Fan Y., Cheng Y. J. Design of Low Loss Ka-Band SPDT Switch Based onAlGaN/GaN HEMT Technology. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). P. 1–3. DOI: 10.1109/IMWS-AMP54652.2022.10107090.
- Saini E., Sinha S., Kumar P. P., Bhattacharya A. N. X-Band High Power GaN SPDT Switch MMIC for Space based Radar Front End. 2023 IEEE Wireless Antenna and Microwave Symposium (WAMS). P. 1–4. DOI: 10.1109/WAMS57261.2023.10242975.
- Erturk V., Gurdal A., Akoglu B. C., Ozbay E. 60W Stacked-HEMT Based Asymmetric X-Band GaN SPDT Switch for Single Chip T/R Modules. Proceedings of the 18th European Microwave Integrated Circuits Conference (EuMIC). 2023. P. 265–268. DOI: 10.23919/EuMIC58042.2023.10288908.
- Johannes S., Kolodziej K., Popovic Z. GaN MMIC RF Switches for In-Band Full-Duplex Phased Array Calibration. 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON). P. 1–4. DOI: 10.1109/WAMICON53991.2022.9786126.
- Chang Y.-T. Wideband Asymmetric Single-Pole Double-Throw Switch Based on Back-to-Back Coupler Structure. IEEE Solid-State Circuits Letters. 2023. V. 6. P. 205–208. DOI: 10.1109/LSSC.2023.3296202.
- Zhu H.-R., Ning X.-Y., Huang Z.-X., Guo Y.-X., Wu X.-L. Miniaturized, Ultra-Wideband and High Isolation Single Pole Double Throw Switch by Using π-Type Topology in GaAs pHEMT Technology. IEEE Transactions on Circuits and Systems – II: Express Briefs. 2021.
V. 68. № 1. P. 191–195. DOI: 10.1109/TCSII.2020.3001171. - Kochemasov V., Shadskij V. Tverdotel'nye SVCh-fazovrashhateli. Ch. 1. Jelektronika: NTB. 2017. № 1(00161). S. 86–100. DOI: 10.22184/1992-4178.2016.161.1.86.100 (in Russian).
- Kochemasov V., Belov L. Attenjuatory s jelektronnym upravleniem. Jelektronika: NTB. 2017. № 4(00164). S. 82–95. DOI: 10.22184/1992-4178.2017.164.4.82.95 (in Russian).
- Filaretov A., Chalyj V. SVCh faundri s voennoj priemkoj: ot fiziko-topologicheskogo bazisa k TU na biblioteku standartnyh jelementov. Materialy VIII Vseross. nauch.-tehnich. konf. «Obmen opytom v oblasti sozdanija sverhshirokopolosnyh radiojelektronnyh sistem». 2020. S. 232–235 (in Russian).
- Kondratenko A., Bragin D., Dosanov A., Zykov D., Sorvachev P. Funkcional'nye uzly radiotrakta PPM AFAR H-dia-pazona v monolitnom integral'nom ispolnenii. SVCh jelektronika. 2021. № 1. S. 34–39 (in Russian).
- Bereznjak A., Korotkov A. Sintez i realizacija monolitnyh integral'nyh shem SVCh-perekljuchatelej na osnove GaAs rNEMT-tehnologii. Nauchno-tehnicheskie vedomosti SPbGPU. Informatika. Telekommunikacii. Upravlenie. 2019. T. 12. № 4. S. 84–96. DOI: 10.18721/JCSTCS.12407 (in Russian).
- Kalent'ev A., Dobush I., Gorjainov A., Sal'nikov A. Intellektual'naja SAPR «Smekalec»: bystryj i prostoj sintez SVCh integral'nyh shem. Jelektronika: NTB. 2022. № 3(00214). S. 76–80. DOI: 10.22184/1992-4178.2022.214.3.76.80 (in Russian).
- Klimenko D., Nikitin A., Stroganov A., Tsikin I. Features of centimeter-band filter-bank design based on GaAs pHEMT-technology. Computing, Telecommunications and Control. 2023. V. 16. № 3. P. 7–17. DOI: https://doi.org/10.18721/JCSTCS.16301.
- Luo L., Liu J., Wang G., Wu Y. Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch. Journal of Semiconductors. 2020. V. 41. № 032102. P. 1–6. DOI: 10.1088/1674-4926/41/3/032102.
- Haddad F., Hammadi A. B., Saad S. Effect of Multi-Finger Gate MOSFET on RF Analog Integrated Circuit Performances. 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS). 2020. P. 1–4. DOI: 10.1109/DTIS48698.2020.9081132.
- Popov A., Dobush I., Sal'nikov A., Gorjainov A. Obzor metodik postroenija malosignal'nyh modelej tranzistorov dlja upravljajushhih SVCh-ustrojstv. Jelektronnaja tehnika. Ser. 1. SVCh-tehnika. 2020. Vyp. 3(546). S. 10–33 (in Russian).
- Saintly-Tech Communications Limited. Products. MMIC Die Chip: GaAs FET Switch. SKD102080100-1 [jelektronnyj resurs] URL: http://www.sainty-tech.com/en/Filter/194.html (Data obrashhenija: 25.01.2024).
- Saintly-Tech Communications Limited. Products. MMIC Die Chip: GaAs FET Switch. SKD102080120 [jelektronnyj resurs] URL: http://www.sainty-tech.com/en/Filter/194.html (Data obrashhenija: 25.01.2024).
- Gudkov A., Vjuginov V., Popov V., Solovjev Yu., Travin N., Chizhikov S., Agandeev R., Shashurin V. Technologicheskiye aspekty izgotovleniya MIS SVCh. Uspehi sovremennoy radioelectoniki. 2022. T. 76. № 8. С. 52–71. DOI: https://doi.org/10.18127/j20700784-202208-03 (in Russian).