350 rub
Journal Radioengineering №3 for 2024 г.
Article in number:
On OFDM for Underwater Acoustic Communications at low SNR
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202403-06
UDC: 621.391
Authors:

A.L. Gelgor1, D.A. Puzko2,  Y.M. Skorodumov3, E.V. Lukoyanov4, A.E. Panarin5Pashkevich6

1,2 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

3-6 State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC

1 agelgor@spbstu.ru; 2 danilapuzko@mail.ru; 3 skorum@mail.ru; 4 lukoyanov.egor@mail.ru; 5 alex32757@gmail.com, 6iv@bk.ru

Abstract:

Formulation of the problem. OFDM has recently taken a leading role for high data-rate underwater acoustic communications over short distances and under relatively high signal-to-noise ratios (SNR). It is due to the high efficiency of OFDM in multipath channels along with the relatively low computational complexity of its processing. At the same time, CDMA has traditionally been used for this type of communication. To develop the use of OFDM in underwater acoustic communications, an interesting task is to implement the transmission of underwater acoustic signals with OFDM imperceptibly or over long distances, i.e. in conditions where the signal level is below the noise level. This will make it possible to create universal underwater acoustic modems based on OFDM.

Objective. Разработка и апробация для гидроакустического канала методики формирования и обработки сигнально-кодовых конструкций на основе сигналов с OFDM, обеспечивающих передачу информации в условиях значений ОСШ меньше 0 дБ с возможностью адаптации к помеховой обстановке.

Results. A technique is proposed for the formation and processing of modulation and coding scheme based on OFDM for effective data transmission under SNR values below 0 dB. Specifically, firstly, it is proposed to perform coherent signal accumulation on a resource block - cells of several adjacent subcarriers and several adjacent OFDM symbols. Secondly, it is proposed to use differential modulation and thereby eliminate the need for channel estimation and equalizing. Thirdly, it is proposed to use a cascade connection of an external convolutional code and an internal repetition code. Fourthly, to ensure the possibility of detecting a signal and estimating the Doppler coefficient, it is proposed to use two successive pulses of hyperbolic frequency modulation with opposite laws of frequency change over time. Fifthly, to compensate for the Doppler effect, it is proposed to use the chirp-z transform. The proposed modulation and coding schemes were successfully tested in real cases in the waters of Lake Ladoga. Error-free data transmission was demonstrated at SNR equals –18.6 dB.

Practical significance. The presented results confirm the feasibility of using OFDM to transmit data over an underwater acoustic channel under low SNR. At the same time, the choice of parameters of the modulation and coding scheme allows you to adapt to the interference environment.

Pages: 48-62
For citation

Gelgor A.L., Puzko D.A., Skorodumov Y.M., Lukoyanov E.V., Panarin A.E., Pashkevich I.V. On OFDM for Underwater Acoustic
Communications at low SNR. Radiotekhnika. 2024. V. 88. № 3. P. 48−62. DOI: https://doi.org/10.18127/j00338486-202403-06
(In Russian)

References
  1. Stojanovic M., Beaujean P.P. Acoustic Communication. in Springer Handbook of Ocean Engineering. M.R. Dhanak and N.I. Xiros Eds. Part B: Autonomous Ocean Vehicles and Control. T. Curtin Ed. Springer. 2016.
  2. Stojanovic M., Preisig J. Underwater acoustic communication channels: Propagation models and statistical characterization. in IEEE Communications Magazine. January 2009. V. 47. № 1. Р. 84-89. DOI: 10.1109/MCOM.2009.4752682.
  3. Moety F., Lahoud S., Cousin B., Khawam K. Joint power-delay minimization in 4G wireless networks. in Proc. IFIP Wireless Days (WD). Nov. 2014. Р. 1–8.
  4. Berger C.R., Zhou S., Preisig J.C., Willett P. Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing. IEEE Transactions on Signal Processing. Мarch 2010. V. 58. № 3. P. 1708-1721. DOI: 10.1109/TSP.2009.2038424.
  5. Socheleau C.L.F-X., Stojanovic M., Passerieux J.-M. Information theoretic analysis of underwater acoustic OFDM systems in highly dispersive channels. Journal of Electrical and Computer Engineering. V. 2012.
  6. Aval Y.M., Stojanovic M. Differentially Coherent Multichannel Detection of Acoustic OFDM Signals. IEEE Journal of Oceanic Engineering. April 2015. V. 40. № 2. P. 251-268. DOI: 10.1109/JOE.2014.2328411.
  7. Murad Mohsin, Tasadduq, Imran Otero, Pablo. Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels. Journal of Marine Science and Engineering. 2022. 10. 91. 10.3390/jmse10010091.
  8. Stojanovic M. MIMO OFDM over underwater acoustic channels. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers. Pacific Grove. CA, USA. 2009. Р. 605-609. DOI: 10.1109/ACSSC.2009.5469907.
  9. Chen P., Rong Y., Nordholm S., He Z., Duncan A. Joint channel estimation and impulsive noise mitigation in underwater acoustic OFDM communication systems. IEEE Trans. Wirel. Commun. 2017. № 16. Р. 6165–6178.
  10. Gel'gor A.L., Gorlov A.I., Ivanov P.V., Popov E.A., Arhipkin A.V., Gel'gor T.E. Povyshenie pomehoustojchivosti priema signalov UPLINK LTE pri ispol'zovanii turbojekvalajzera. Radiotehnika. 2015. T. 79. № 9. S. 39-50 (in Russian).
  11. Kulhandjian H., Melodia T., Koutsonikolas D. CDMA-Based Analog Network Coding for Underwater Acoustic Sensor Networks. IEEE Transactions on Wireless Communications. Nov. 2015. V. 14. № 11. P. 6495-6507. DOI: 10.1109/TWC.2015.2456012.
  12. Oyerinde O.O. An Overview of Channel Estimation Schemes based on Regularized Adaptive Algorithms for OFDM-IDMA Systems. Digital Signal Processing Journal. Apr. 2018. V. 75. P. 168-183.
  13. Amar A., Avrashi G., Stojanovic M. Low Complexity Residual Doppler Shift Estimation for Underwater Acoustic Multicarrier Communication. IEEE Transactions on Signal Processing. 2017. 15 April. V. 65. № 8. P. 2063-2076. DOI: 10.1109/TSP.2016.2630039.
  14. Chilingarov A., Vylegzhanin E., Khuc B., Puzko D., Batov Y., Gelgor A. Comparison of Channel Estimation Methods for Underwater Acoustic Channel”. International Youth Conference on Electronics. Telecommunications and Information Technologies. Springer. Cham. Proceedings in Physics. 2021. V. 255.
  15. Vylegzhanin E., Chilingarov A., Khuc B., Puzko D., Batov Y., Gelgor A. Comparison of PAPR Reduction Techniques for OFDM Transmission Over Underwater Acoustic Channel. International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer, Cham. Springer Proceedings in Physics. V. 255.
  16. Chilingarov A., Gelgor A. Doppler Effect Compensation with Chirp-z Transform for Underwater Acoustic Communications with OFDM Signaling. 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russian Federation. 2022. Р. 87-90. DOI: 10.1109/EExPolytech56308.2022.9950810.
  17. Khuc B., Vylegzhanin E., Chilingarov A., Puzko D., Batov Y., Gelgor A. Preamble Signals for Detection Timing and Doppler Synchronization in Underwater Acoustic Communications. Telecommunications and Information Technologies. Springer, Cham. Proceedings in Physics. 2021. V. 255.
  18. Wang K., Chen S., Liu C., Liu Y., Xu Y. Doppler estimation and timing synchronization of underwater acoustic communication based on hyperbolic frequency modulation signal. 2015 IEEE 12th International Conference on Networking, Sensing and Control. Taipei, Taiwan. 2015. Р. 75-80. DOI: 10.1109/ICNSC.2015.7116013.
  19. Wang K., Chen S., Liu C., Liu Y., Xu Y. Doppler estimation and timing synchronization of underwater acoustic communication based on hyperbolic frequency modulation signal. 2015 IEEE 12th International Conference on Networking, Sensing and Control. Taipei, Taiwan. 2015. Р. 75-80. DOI: 10.1109/ICNSC.2015.7116013.
  20. Ling Z., Xie L., Chen H. Joint Doppler Scale Estimation and Timing Synchronization in Underwater Acoustic Communications. 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Dalian, China. 2019. Р. 1-6. DOI: 10.1109/ICSPCC46631.2019.8960868.
  21. Zhou S., Wang Z. OFDM for underwater acoustic communications. Wiley & Sons. 2014.
Date of receipt: 29.01.2024
Approved after review: 06.02.2024
Accepted for publication: 28.02.2024