350 rub
Journal Radioengineering №3 for 2024 г.
Article in number:
Computational complexity of algorithm with decision feedback and maximum reliable estimation of following symbols for receiving spectrally effective signals with controlled intersymbol interference
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202403-02
UDC: 621.391.8
Authors:

I. Lavrenyuk1, S.B. Makarov2, S.V. Zavjalov3, G.P. Zhabko4, T.Yu. Kudryashova5, V.S. Sinepol6

1-6 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

1 lavrenyuk_i@spbstu.ru; 2 makarov@cee.spbstu.ru; 3 zavyalov_sv@spbstu.ru; 4 zhabko_gp@spbstu.ru; 5 kudryashova_tyu@spbstu.ru; 6 sinepol@mail.spbstu.ru

Abstract:

Formulation of the problem. The computational complexity of reception algorithms increases when transmitting data at speeds above the Nyquist limit. The most economical in terms of computational costs are algorithms for element-by-element coherent reception with decision feedback.

The goal is to determine the growth of the computational complexity of the processing algorithm with decision feedback and the most reliable estimate of subsequent symbols. We used spectrally efficient signals with controlled intersymbol interference at transmission rates above the Nyquist limit.

Results. A method for estimating energy losses with increasing data rate for a fixed error probability is proposed. It is shown that an increase in the data rate by 1.5 times higher than the Nyquist limit leads to an increase in the energy loss by 2.5 dB for a fixed computational complexity of the processing algorithm and a fixed error probability BER = 10–4. It is also shown that with an acceptable increase in energy loss, for example, 2 dB, an increase in the data rate by 1.5 times leads to an increase in the computational complexity from 0.8 105 to 3.3 105 number of operations.

Practical significance. The decision feedback algorithms for processing spectrally efficient signals can be used in the hardware of DVB-S2/S2X satellite digital broadcasting systems, as well as in the channels of data transmission systems of interactive broadcasting systems.

Pages: 7-19
References
  1. Tkachenko D.A., Batov Ju.V., Puz'ko D.A., Gel'gor A.L. Ocenka jeffektivnosti ispol'zovanija cifrovoj predkorrekcii v usiliteljah moshhnosti sputnikovyh sistem veshhanija DVB-S2/S2X. Radiotehnika. 2022. T. 86. № 12. S. 48-57. DOI: https://doi.org/10.18127/j00338486-202212-04 (in Russian).
  2. Gel'gor A.L., Gel'gor T.E. Novye formy impul'sov dlja signalov s chastichnym otklikom, obespechivajushhie vyigrysh po otnosheniju k signalam faster-than-nyquist. Radiotehnika. 2018. № 12. S. 39-48 (in Russian).
  3. Ovsjannikova A.S., Makarov S.B., Zav'jalov S.V., Volvenko S.V. Ocenka stepeni priblizhenija informacionnoj sistemy k granicam Shennona putem ispol'zovanija optimal'nyh po kriteriju maksimal'noj koncentracii jenergii v polose chastot signalov. Radiotehnika. 2023.
    T. 87. № 1. S. 5-22. DOI: https://doi.org/10.18127/j00338486-202301-01 (in Russian).
  4. Anderson J.B., Rusek F., Öwall V. Faster-Than-Nyquist Signaling. in Proceedings of the IEEE. Aug. 2013. V. 101. № 8. Р. 1817-1830. DOI: 10.1109/JPROC.2012.2233451.
  5. Makarov S.B., et al. Optimizing the Shape of Faster-Than-Nyquist (FTN) Signals with the Constraint on Energy Concentration in the Occupied Frequency Bandwidth. in IEEE Access. 2020. V. 8. Р. 130082-130093. DOI: 10.1109/ACCESS.2020.3009213.
  6. Fan J., Guo S., Zhou X., Ren Y., Li G.Y., Chen X. Faster-Than-Nyquist Signaling: An Overview. in IEEE Access. 2017. V. 5.
    Р. 1925-1940. DOI: 10.1109/ACCESS.2017.2657599.
  7. Bahri Z. Robust Estimators for Faster-Than-Nyquist Signaling. in IEEE Access. 2022. V. 10. Р. 13787-13799.
    DOI: 10.1109/ACCESS.2022.3147412.
  8. Gunturu A., Sahoo A.K., Reddy Chavva A.K. Faster than Nyquist Waveform for Beyond 5G Systems - Evaluation and Implementation Aspects. ICC 2022 - IEEE International Conference on Communications (Seoul, Kore). 2022. Р. 1859-1864.
    DOI: 10.1109/ICC45855.2022.9838624.
  9. Bedeer E., Ahmed M.H., Yanikomeroglu H. A Very Low Complexity Successive Symbol-by-Symbol Sequence Estimator for Faster-Than-Nyquist Signaling. in IEEE Access. 2017. V. 5. Р. 7414-7422. DOI: 10.1109/ACCESS.2017.2663762.
  10. Abbasi S., Bedeer E. Low Complexity Classification Approach for Faster-Than-Nyquist (FTN) Signaling Detection. in IEEE Communications Letters. March 2023. V. 27. № 3. Р. 876-880. DOI: 10.1109/LCOMM.2023.3236953.
  11. Forney G. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. in IEEE Transactions on Information Theory. May 1972. V. 18. № 3. P. 363-378. DOI: 10.1109/TIT.1972.1054829.
  12. Zhang G., Guo M., Shen Y. Comparison of low complexity receiver techniques for faster-than-nyquist signaling. 2016 CIE International Conference on Radar (RADAR) (Guangzhou, China). 2016. Р. 1-6. DOI: 10.1109/RADAR.2016.8059452.
  13. Tong M., Huang X., Zhang J.A. Frame-based Decision Directed Successive Interference Cancellation for FTN Signaling. 2022 IEEE Globecom Workshops (GC Wkshps) (Rio de Janeiro, Brazil). 2022. Р. 1670-1674. DOI: 10.1109/GCWkshps 56602.2022.10008577.
  14. Kislicyn A.B., Rashich A.V. Peredacha i priem signalov s DOQPSK i CDOQPSK s ispol'zovaniem algoritma viterbi. Nauchno-tehnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politehnicheskogo universiteta. Informatika. Telekommunikacii. Upravlenie. 2012. № 6(162). S. 66-72 (in Russian).
  15. Kartashevskij V.G., Mishin D.V. Kompensacija additivnyh pomeh v posledovatel'nyh sistemah s OSR. Radiotehnika. 1997. T. 51. № 8. S. 4-9 (in Russian).
  16. Habarov E.O. Vyravnivanie s OSR v mnogoluchevom kanale s zamiranijami pri povyshennoj udel'noj skorosti moduljacii. Radiotehnika. 2006. T. 70. № 12. S. 22-29 (in Russian).
Date of receipt: 29.01.2024
Approved after review: 06.02.2024
Accepted for publication: 28.02.2024