350 rub
Journal Radioengineering №2 for 2024 г.
Article in number:
Analyzing the phase and amplitude noise of RZ, NRZ and RF DACs
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202402-17
UDC: 621.373.52
Authors:

A.V. Korolev1, S.G. Rykov2

1,2 JSC «All-Russian Scientific Research Institute of Radio Engineering» (Moscow, Russia)

1 teleret@mail.ru; 2 brig001@mail.ru

Abstract:

This article considers a multi-mode RF DACs phase and amplitude noise for non-return-to-zero (NRZ), return-to-zero (RZ), and mix/RF reconstruction waveforms under the assumption that two switch pairs (or two channels) in each current switch cells are alternately active in every clock cycle, Analysis shows that each channel of multimode DAC is completely characterized with RZ mode, and all other modes can be derived from this mode, in particular NRZ mode is not a complete analog of conventional DAC performance when reconstruction pulse duration and period are equal.

When determining phase and amplitude noise of multi-mode RF DAC, one should keep in mind the phase shift between two switch pairs output pulses spectral components in NRZ and RF modes. This phase shift depends upon DAC mode (NRZ or RF) and output oscillation frequency. As consequence an analysis indicates that the 3 dB improvement of 1/F phase noise can be achieved in 1st Nyquist zone when using NRZ mode, the same in 2nd Nyquist zone with RF mode if amplitude noise of DAC switch pairs is negligible.

The independence of 1/F noise from clock frequency has simple physical interpretation. As correlation period of 1/F noise is significantly greater than output oscillation period, the delay of this oscillation caused by phase fluctuations in DAC is the same for any mode, and analysis of noise spectral density for conventional DAC can be extended to multi-mode RF DACs.

Pages: 138-155
For citation

Korolev A.V., Rykov S.G. Analyzing the phase and amplitude noise of RZ, NRZ and RF DACs. Radiotekhnika. 2024. V. 88. № 2.  P. 138−155. DOI: https://doi.org/10.18127/j00338486-202402-017 (In Russian)

References
  1. Bugeja A.R. et al. A 14-b, 100-MS/s CMOS DAC designed for spectral performance. IEEE Journal of Solid-State Circuits. 1999.  T. 34. № 12. S. 1719–1732.
  2. Clara M. High-performance D/A-converters: Application to digital transceivers. Springer Science & Business Media, 2012. T. 36.
  3. Yun J. et al. A Return-to-zero DAC with Tri-state Switching Scheme for Multiple Nyquist Operations. JSTS: Journal of Semiconductor Technology and Science. 2017. T. 17. № 3. S. 378–386.
  4. Li X., Zhou L. A survey of high-speed high-resolution current steering DACs. Journal of Semiconductors. 2020. T. 41. № 11.  S. 111404.
  5. Choe M. J., Baek K. H., Teshome M. A 1.6 GS/s 12b return-to-zero GaAs RF DAC for multiple Nyquist operation. IEEE Journal of SolidState Circuits. 2005. T. 40. № 12. S. 2456–2468.
  6. Adams R., Nguyen K.Q. A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling //IEEE Journal of Solid-State Circuits. 1998. T. 33. № 12. S. 1871–1878.
  7. Chen Y.S. Multi-Mode Sub-Nyquist Rate D/A Converter for TV Band Cognitive Radio : dis. UC Berkeley, 2012.
  8. Park S. et al. A digital-to-analog converter based on differential-quad switching. IEEE Journal of Solid-State Circuits. 2002. T. 37. № 10. S. 1335–1338.
  9. ZHalud V., Kuleshov V.N. SHumy v poluprovodnikovyh ustrojstvah // Pod obshch. red. A.K. Naryshkina. Sovmestnoe sovetskocheshskoe izdanie. M.: Sov. radio. 1977. 416 s. (In Russian).
  10. Sergienko A.B. Cifrovaya obrabotka signalov: ucheb. posobie. – Izd. 3-e. SPb.: BHV-Peterburg. 2011. 768 s. (In Russian).
  11. High Speed DAC [Elektronnyj resurs]: sajt kompanii Analog Devices, Inc., 2021. URL: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9164.pdf (data obrashcheniya: 30.12.2021).
  12. Novye radiochastotnye CAP rasshiryayut gorizonty programmno-opredelyaemyh radiosistem:[Elektronnyj resurs]: https:// www.rlocman.ru/review/article.html?di=276533 (In Russian).
  13. Kuleshov V.N., Liu H.Y., Leshukov B.E. 1/f Fluctuations Sources in Direct Digital Frequency Synthesizers and Their Contribution to the Output Oscillations Power Spectral Density. Proc. 1995 IEEE int. Freq. Control Symposium. 1995. R. 282–287.
  14. Korolev A.V., Rykov S.G. Fazovye shumy cifrovyh vychislitel'nyh sintezatorov pri izmenenii chastot taktovogo i vyhodnogo kolebaniya // Radiotekhnika. 2021. T. 85. № 5. S. 100−116. DOI: https://doi.org/10.18127/j00338486-202105-10 (In Russian).
  15. Romashov V.V., Doktorov A.N., YAkimenko K.A., Sochneva N.A. Matematicheskoe modelirovanie shumovyh harakteristik formirovatelej vysokochastotnyh signalov na osnove bystrodejstvuyushchih cifro-analogovyh preobrazovatelej // Radiotekhnicheskie i telekommunikacionnye sistemy. 2019. № 4 (36). S. 52–59 (In Russian).
  16. Rubiola E. Phase noise and frequency stability in oscillators. Cambridge University Press. 2008. P. 220.
  17. CHuprina P. ACP i CAP kompanii Maxim dlya precizionnyh izmeritel'nyh ustrojstv. Maloe energopotreblenie i vysokaya integraciya // Elektronika: Nauka, tekhnologiya, biznes. 2013. № 1. S. 056–063 (In Russian).
  18. Glascott-Jones A. et al. Using e2v's High Speed Space Grade ADC and DAC to achieve direct conversion of L band Signals. 2011 12th International Radar Symposium (IRS). IEEE. 2011. P. 829–834.
  19. Glascott-Jones A. et al. Results from a prototype 6GSps digital to analogue converter with greater than 7 GHz analogue bandwidth. 2016 11th European Microwave Integrated Circuits Conference (EuMIC). IEEE. 2016. P. 385–388.
  20. Calosso C.E., Cárdenas Olaya A.C., Rubiola E. Phase-Noise and Amplitude-Noise Measurement of DACs and DDSs. In IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Feb. 2020. V. 67, № 2. P. 431–439.
Date of receipt: 01.11.2023
Approved after review: 09.11.2023
Accepted for publication: 30.01.2024